Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.08Keywords:
Cardiovascular diseases, Electrocardiogram, EfficientNetB0, Dense neural network, Dual-Modality model, Heart diseases, Coronary Heart Disease, Single-Modality models, Particle Swarm Optimization.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular diseases (CVDs) remain a leading global health concern, emphasizing the need for accurate and early diagnostic systems. This study introduces a hybrid deep learning model that leverages dual-modality data by integrating clinical tabular data and ECG images for heart disease prediction. Both datasets comprising clinical features and corresponding ECG images of the same individuals and these datasets are real—time datasets. Feature extraction from ECG images is conducted using a fine-tuned EfficientNetB0 convolutional neural network, while features from the clinical dataset are extracted using a Dense Neural Network (DNN). To enhance the model’s predictive performance and reduce dimensionality, Particle Swarm Optimization (PSO) is employed to select the most relevant features from the combined feature space. The proposed dual-modality model uses a fine-tuned DNN classifier, incorporating dense and dropout layers to prevent overfitting and improve generalizability. Extensive pre-processing techniques, including image augmentation and standardization of clinical features, were applied to ensure data quality. The model achieved an accuracy of 86.13%, precision of 87%, recall of 89%, and an F1-score of 88%, significantly outperforming traditional single-modality models. Additionally, it demonstrated strong discriminative capability with a ROC AUC of 0.93. These results highlight the effectiveness of combining diverse data types and optimizing feature selection using IPSO to support clinical decision-making in heart disease diagnosis.Abstract
How to Cite
Downloads
Similar Articles
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Divya R., Vanathi P. T., Harikumar R., An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

