Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.08Keywords:
Cardiovascular diseases, Electrocardiogram, EfficientNetB0, Dense neural network, Dual-Modality model, Heart diseases, Coronary Heart Disease, Single-Modality models, Particle Swarm Optimization.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular diseases (CVDs) remain a leading global health concern, emphasizing the need for accurate and early diagnostic systems. This study introduces a hybrid deep learning model that leverages dual-modality data by integrating clinical tabular data and ECG images for heart disease prediction. Both datasets comprising clinical features and corresponding ECG images of the same individuals and these datasets are real—time datasets. Feature extraction from ECG images is conducted using a fine-tuned EfficientNetB0 convolutional neural network, while features from the clinical dataset are extracted using a Dense Neural Network (DNN). To enhance the model’s predictive performance and reduce dimensionality, Particle Swarm Optimization (PSO) is employed to select the most relevant features from the combined feature space. The proposed dual-modality model uses a fine-tuned DNN classifier, incorporating dense and dropout layers to prevent overfitting and improve generalizability. Extensive pre-processing techniques, including image augmentation and standardization of clinical features, were applied to ensure data quality. The model achieved an accuracy of 86.13%, precision of 87%, recall of 89%, and an F1-score of 88%, significantly outperforming traditional single-modality models. Additionally, it demonstrated strong discriminative capability with a ROC AUC of 0.93. These results highlight the effectiveness of combining diverse data types and optimizing feature selection using IPSO to support clinical decision-making in heart disease diagnosis.Abstract
How to Cite
Downloads
Similar Articles
- Gulshan Makkad, Lalsingh Khalsa, Vinod Varghese, Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Firdaus Benazir, Reena Mohanka, S Rehan Ahmad, Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

