Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.08Keywords:
Cardiovascular diseases, Electrocardiogram, EfficientNetB0, Dense neural network, Dual-Modality model, Heart diseases, Coronary Heart Disease, Single-Modality models, Particle Swarm Optimization.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular diseases (CVDs) remain a leading global health concern, emphasizing the need for accurate and early diagnostic systems. This study introduces a hybrid deep learning model that leverages dual-modality data by integrating clinical tabular data and ECG images for heart disease prediction. Both datasets comprising clinical features and corresponding ECG images of the same individuals and these datasets are real—time datasets. Feature extraction from ECG images is conducted using a fine-tuned EfficientNetB0 convolutional neural network, while features from the clinical dataset are extracted using a Dense Neural Network (DNN). To enhance the model’s predictive performance and reduce dimensionality, Particle Swarm Optimization (PSO) is employed to select the most relevant features from the combined feature space. The proposed dual-modality model uses a fine-tuned DNN classifier, incorporating dense and dropout layers to prevent overfitting and improve generalizability. Extensive pre-processing techniques, including image augmentation and standardization of clinical features, were applied to ensure data quality. The model achieved an accuracy of 86.13%, precision of 87%, recall of 89%, and an F1-score of 88%, significantly outperforming traditional single-modality models. Additionally, it demonstrated strong discriminative capability with a ROC AUC of 0.93. These results highlight the effectiveness of combining diverse data types and optimizing feature selection using IPSO to support clinical decision-making in heart disease diagnosis.Abstract
How to Cite
Downloads
Similar Articles
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Bhavika Bhagyesh Lad, Sonam Mansukhani, Applying the risk-need-responsivity model in juvenile offender treatment: A conceptual framework , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, The green inventory model for sustainable environment that includes degrading products and backordering with integration of environmental cost , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Rajashree Sunder Raj, Sayar Ahmad Sheikh, Health status of women in slums: A comprehensive study in Raichur District Karnataka, India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Divya Goyal, Aksh Chahal, Aashi Bhatnagar, Vishakha, Sheetal Malhan, Vishwajeet Trivedi, Comparison of the acute metabolic and cardiovascular effects of electrical stimulation and voluntary exercise , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

