Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.12Keywords:
Combinatorial optimization, Knapsack problem, Cost to Customer Optimization, Vehicle IoT data, Dynamic ProgrammingDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The automotive original equipment manufacturers (OEM) current challenge of deriving the optimized cost to customer for the product when the product is configured dynamically. For every OEM the product they sell is bounded by warranty terms, thus the product configuration they offer should be reliable to withstand the warranty period. This paper discusses about the optimization of cost of the power train configuration which is offered to the customer is incorporated with the product cost and the provisional warranty cost. For a target cost the product planner must configure a power train configuration which should adhere to the target cost but selecting the power train configuration only based on cost will defeat the performance of the vehicle. Thus, power train configuration is governed based on the reliability factor of the power train components which is derived using a vehicle IoT data derived from live running vehicles. The cost to customer is calculated as the sum of product cost and provisional-warranty cost calculated based on the dynamic reliability predicted using the vehicle Internet of Things (IoT) data. In this paper, for the target cost to customer set by the product planner to select the best fit power train configuration for the product line, is formulated as a 0-1 knapsack problem, and dynamic programming is used to find the optimized cost to customer which is the sum of two variables the product cost and provisional warranty cost. The findings using this method is encouraging as the use of combinatorial optimization techniques and the vehicle IoT data model for deriving the dynamic reliability data are working in tandem to provide an optimum cost output.Abstract
How to Cite
Downloads
Similar Articles
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Madhuri Prashant Pant, Jayshri Appaso Patil, Unlocking the potential of big data and analytics significance, applications in diverse domains and implementation of Apache Hadoop map/reduce for citation histogram , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

