
Abstract
The automotive original equipment manufacturers (OEM) current challenge of deriving the optimized cost to customer for the product 
when the product is configured dynamically. For every OEM the product they sell is bounded by warranty terms, thus the product 
configuration they offer should be reliable to withstand the warranty period. This paper discusses the optimization of cost of the power 
train configuration, which is offered to the customer and incorporated with the product cost and the provisional warranty cost. For a 
target cost, the product planner must configure a power train configuration that should adhere to the target cost. However, selecting 
the power train configuration only based on cost will defeat the vehicle’s performance. Thus, power train configuration is governed 
based on the reliability factor of the power train components which is derived using vehicle IoT data derived from live running vehicles. 
The cost to customer is calculated as the sum of product cost and provisional-warranty cost calculated based on the dynamic reliability 
predicted using the vehicle’s Internet of Things (IoT) data. In this paper, for the target cost to the customer set by the product planner to 
select the best fit power train configuration for the product line, is formulated as a 0-1 knapsack problem, and dynamic programming 
is used to find the optimized cost to customer which is the sum of two variables the product cost and provisional warranty cost. The 
findings using this method is encouraging as the use of combinatorial optimization techniques and the vehicle IoT data model for 
deriving the dynamic reliability data are working in tandem to provide an optimum cost output.
Keywords: Combinatorial optimization, Knapsack problem, Cost to Customer Optimization, Vehicle IoT data, Dynamic Programming.
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Introduction
In the competitive commercial vehicles market, customers 
are started giving more preference to total cost of ownership 
(TCO) towards that preference, the customers are expecting 
the vehicles to perform more, with less down time. Thus, in 
recent times, the standard warranty period of commercial 
vehicles which are earlier 3 or 4 years, are increased to 5 or 
6 years, as the customer prefer to own a vehicle that comes 

The Scientific Temper (2023) Vol. 14 (2): 323-328	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2023.14.2.12	 https://scientifictemper.com/

with more coverage in terms of breakdown. There are two 
challenges to the OEM’s: the provisional cost of warranty 
calculation method needs to be changed, as the regular 
method of calculating the failure and then calculating 
the warranty cost per vehicle is not profitable. Similar 
optimization of powertrain selection based on lightweight 
components and fuel efficiency was taken as a main reference 
to formulate this problem (Wilhelm, Hofer, & Cheah, 2017). 
The Figure 1 shows the warranty cost % w.r.t. revenue in 
the last 9 years, shows the warranty cost to the company is 
increasing and not decreasing, moreover, this will impact 
the brand name of the company. Thus, it is seen as a serious 
issue. Every company will be allocating provisional warranty 
cost for each vehicle, due to the increase in warranty period, 
the provisional warranty cost needs to be calculated in a 
precise manner. The reliability factor is considered as the 
element to calculate the provisional warranty cost based on 
the actual usage of the vehicle data. In this paper, the cost 
to customer by optimizing the warranty cost with respect 
to the target cost is given for the powertrain components, 
the results are encouraging.
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Figure 1: Warranty cost % in revenue [2]

Cost to Customer
In the commercial vehicle industry, the powertrains are 
configured using usage, application, and affordability 
of the customer. During the product configuration, 
for the given application and usage, the system will 
recommend a powertrain configuration based on the 
product’s reliability, which may not be affordable by the 
customer, as the configuration cost will be more than the 
expectation. Thus, the customer will start reconfiguring 
and select a configuration that matches the budget. 
Product cost optimization has been using executed using 
multiple variables like price sensitivity analysis (Mayer & 
Steinhardt, 2016), price optimization based on capacity 
constraints (Gallego & Wang, 2014) and price optimization 
for budget constraint customers (Mayer, Klein & Seiermann, 
2013) encourages to formulate cost to customer as the 
target variable for the problem. Moreover, this forms the 
current practical problem of the industry. As the selected 
configuration is not recommended may lead to the multiple 
failure of parts and increase the warranty cost to the OEM. 
The cost to customer of the vehicle is calculated based on the 
product cost and provisional warranty cost for the product. 
The provisional warranty cost per vehicle model is calculated 
based on the below formula (1), which may not provide the 
precise warranty cost.

The actual warranty cost per vehicle is often higher than the 
provisional warranty cost of the vehicle model. This affects 
the profitability of the organization and thus, demand for a 
precise provisional warranty cost calculation based on the 
dynamic configuration of the model.

Dynamic Reliability Calculation Using Vehicle Iot 
Data
The important cost component to the customer in the 
product pricing is the provisional warranty cost, the best 
method to warranty cost is to calculate the reliability of the 
component. For a component based on the type of failure, 
two types of reliability can be used: parallel and series 
reliability calculation (Qazizada & Pivarčiová, 2018). After the 

introduction of BS6 vehicles the electronics in the vehicles 
have increased and the operating data captured from the 
vehicles are increased. There are multiple Electronic Data 
Controller (EDC) in the vehicle, namely, Engine Control Unit 
(ECU), Body Control Unit (BCU), Aftertreatment Control Unit 
(ACU), Anti-Lock Braking System (ABS) control unit and the 
telematics data in the vehicle which capture the operating 
data from the vehicles and transfer the bigdata to cloud 
data storage for the organizations to consume the data for 
further analysis and prediction. There are three types of 
data as shown in Figure 2 which is used for the reliability 
prediction. They are failure data of the components from 
job card, vehicle IoT data and telematics data which are the 
operating data of the components and lastly, the master 
data of the contracts, parts, etc.,

Reliability Calculation Framework
The reliability factor for each component in the powertrain 
is calculated using the framework shown in Figure 3. 
The framework is built using multiple data sources and 
mathematical algorithms, which are explained below.

Step 0: Data source
Using the three data lakes with multiple data sources, as 
a first step, the data lake is formed as a single data lake. 
Multiple data sources are available across various systems 
that need to be collated and make a common data source 
for easy data accessibility.

Step 1: Data preparation
After all the data sources are structured into a common 
data source, data labeling for the three types of data needs 
to be completed for the three major data models. The data 
sources for three data models are prepared and mapped 
for the data models: part failure data, vehicle contract data 
and operating condition data are summarized. The data 
frequency for each data table needs to be ensured for the 
calculation.

Step 2: Data model
The data model for each data source is prepared using 
the relevant mathematical formula designed to get the 
failure data, vehicle AMC and contract data model and the 
Operating condition with telematics data. The mathematical 

Figure 2: Three components used for reliability prediction
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algorithms used in each data model are sensitive data 
that cannot be declared. The algorithms selected for each 
data model are selected based on the machine learning 
algorithms.

Step 3: Final application design
The final machine learning algorithm will predict the 
reliability for each component of the powertrain using the 
consolidated deep learning algorithm with the various 
master data inputs like vehicle type, vehicle model, 
application, etc., the reliability factor will be calculated based 
on various operating conditions and store the results against 
each component and operating conditions.

Mathematical Formulation
The problem is formulated as a 0-1 knapsack problem, 
since the optimization of cost to customer matches the 
knapsack problems fundamentals like, there is a capacity 
of the bag which is equal to the target cost of the customer 
for the powertrain, the objects to be filled in the bag 
equals the powertrain configuration with the product cost 
and warranty cost. The challenge is optimizing the cost 
to customer by balancing the product cost and warranty 
cost using the weight called reliability data governed by 
the vehicle IoT data. Thus, this problem qualifies for the 0-1 
knapsack since we cannot do any partial filling of powertrain 
configuration against the target cost as Table 1 provides the 
equivalent variables for the knapsack problem elements.

This problem is solved using a dynamic programming 
method as the number of possible configurations will 
increase as the number of powertrain components 
increases. The variable in this problem is not just the simple 
combinatorial elements and leave the choice of the picking 
to the program, it should be a full combination. In this 
paper we have assumed a powertrain consists of engine, 
clutch, gearbox, and rear axle components only and each 
part family has multiple options like 3 engine options, 5 
gear box options, 6 clutch options and 7 rear axle options. 
There are 21 variables with values, and all are governed by 
various reliability values based on the dynamic vehicle IoT 

data. Table 2 shows the illustrative details of the powertrain 
components with various operating conditions and 
reliability factor for each component predicted using the 
reliability calculation framework.

Assumptions
•	 This calculation is done for a powertrain combination 

that will be offered to multiple vehicles.
•	 All the powertrain options (engine, gear box, clutch, and 

rear axle) are technically feasible, thus making 3 x 5 x 6 
x 7 = 630 configurations possible.

•	 The reliability factor derived is through a detailed logic 
of vehicle IoT data which is assumed to be a dynamic 
variable updated every month after the substantial 
bigdata for analysis.

Since the number of variables is more and the target cost 
is dynamic, as it will change from customer to customer, 
this problem was planned to be executed in a dynamic 
programming method. The summation of product cost and 
provisional warranty cost calculates the total cost to the 
customer. The formula for those variables is given below 
(2) (3) and (4) which will be used for calculating the cost of 
a customer during optimization of the problem.

Dynamic Programming
This problem will be solved using dynamic programming; 
it requires an optimal substructure and overlapping sub-
problems to solve a problem. In this technique, the problem 
is broken into sub-problems and saves the result for future 
purposes, thus, we will not compute the results again. 
The subproblems are optimized to optimize the optimal 
solution, known as the optimal substructure property. In 
this 0-1 knapsack problem both elements are available. 
Thus, we are using dynamic programming techniques 
to solve the problem. In this problem, we use top-down 
dynamic programming with memoization to overcome the 
overlapping sub-problems, since memoization will store 
the results of all the previously solved sub-problems and 
return the results from memory if we encounter a problem 
already solved.

Figure 3: Reliability calculation framework using vehicle IoT and 
telematics data

Table 1: knapsack problem elements mapping of current problem 
elements

Knapsack problem elements Cost to customer optimization

Capacity Target cost of the powertrain

Elements to be filled with 
value

Powertrain configuration options 
with product and warranty cost

Weights for optimization Reliability variable for each 
configuration
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Execution Process
Step 1: Constraints for the powertrain configuration
In this problem, first break the problem into sub-problems 
and try to solve the sub-problems. Based on the selection 
of the constraints from the customer like target cost, terrain, 
weather and driving pattern, the possible powertrain 
options from each part family will be filtered. From the 
filtered options, E x G x C x R powertrain configurations can 
be possible, which must be executed and ensure each valid 
configuration consists of one element of each part family.
Step 2: Product cost and Provisional warranty cost 
calculation
In the possible powertrain configuration, the product cost 
and provisional warranty cost calculation will be executed 
and the computation of cost to customer will be executed. 
In the output where the cost to customer is higher than 
the target cost, those indexes will be discarded and only 
the valid inputs that are lesser than the target cost will be 
selected for further optimization.
Step 3: Reliability factor calculation
For every valid configuration, the reliability factor is 
calculated. Since power train is a combination of 4 
components, each component in the assembly has an 
individual reliability factor. Since the powertrain reliability 
depends on the failure of any of these 4 components, the 
powertrain reliability is calculated as a series reliability 
(Rusiński et al., 2019), in which the reliability factor of all 
individual components is multiplied and derive the reliability 
factor, this factor is called powertrain reliability factor and 
this factor will be used during the optimization.

Step 4: Optimization
In the filtered configuration, the highest and nearest cost 
to the target will be selected and optimized against the 
reliability factor. Thus, this optimization is done against the 
cost vs. reliability of the product, it is always better to provide 
the powertrain configuration with highest reliability factor, 
but it may not satisfy the customer cost target. In many 
cases, the provisional warranty cost is higher and due to low 

reliability factor, thus, making the cost to customer higher 
than the target. The dynamic programming technique will 
provide the best value to the customer and the company by 
optimizing the provisional warranty cost. Thus, the customer 
will be getting the more reliable product and the company 
will not be spending less on the provisional warranty cost 
thus it affects the profitability.

Figure 4 illustrates the working of the algorithm for 
a similar exercise, for the target capacity the algorithm 
expands the possible combination and selects the optimized 
capacity which satisfies the constraints. In the illustrative 
figure, the problem has a choice of selecting any item from 
the list which satisfies the highest capacity and profit. The 
same logic is used, with a modification of instead of any item 
from the list, one item should be mandatorily available from 
each part family and ensure the cost to the customer and 
powertrain reliability factor.

Results and Discussion
As discussed for this problem, there can be 630 possible 
powertrain configurations, in this illustrative example, the 
customer has provided the target cost as value of 600,000 
and selected the values for each variable as flat terrain, 
summer weather and 8.0-8.9 driving score as their major 
operating condition for the powertrain. Applying the filter 
in the 630 configurations will filter the product variants from 
each product family, as in Table 3. From these 8 possible 
variants, 12 power train configurations can be possible. The 
dynamic programming with memoization technique is used 
as a recursive function to fill the two-dimensional array and 
store the results of the sub-problems which will be possible 
powertrain configuration.

For the 12-powertrain configuration, the product cost, 
provisional warranty cost, cost to customer and powertrain 
reliability factor will be calculated using the formulas (2), 
(3), (4) and (5), respectively. The calculated output will be 
stored in a table as illustrated in Table 4 after computation, 
the unique index name will be generated for identifying 
each powertrain configuration. After the data table is filled 
using the memoization method in dynamic programming 
technique, the optimization process will be initiated.

In the process of optimization, the system will start 
comparing the cost to customer against the target cost and 
eliminate the indexes which are not match the target cost, in 
this case, 4 records will be excluded from the optimization 
process. The remaining 8 records will start the optimization 

Table 2: Details of Powertrain Components With Value And 
Reliability Parameters (Illustrative)

Table 3: Selected product variants for the customer filter

Part family Product variants

engine E1, E2, E3

Gear Box G1, G2

Clutch C2

Rear Axle R2, R3
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by comparing the cost to the customer and powertrain 
reliability factor. The higher the cost to the customer is 
better for the organization at the same time, the higher 
the powertrain reliability factor. In the below case, index 
E1G2C2R2 has the highest powertrain reliability factor, but 
the cost to customer is lower. For the index E3G1C2R2 the 
cost to the customer is high and the powertrain reliability 
factor is optimum, thus, 

this will be selected as the optimized powertrain 
configuration for the selected customer configuration as 
illustrated in Figure 5.

Analysis of the Results
The provisional warranty cost calculated using this method 
was compared against the actual warranty cost and found 
the accuracy as 80 to 85%. In this method, the provisional 
warranty cost is calculated based on each component’s 
reliability factor, which is predicted using the vehicle IoT data 
processed using machine learning (ML) algorithm. The data 
accuracy depends on many external parameters like data 
capture of the vehicle and the failure data capture, service 
update capturing, etc. The accuracy of the data is improving 
as time goes on. When the initial model was made, the 
accuracy was approximately 50% with multiple fixes in the 
data capturing pipeline, the accuracy has improved to 80 to 
85%, which seems to be encouraging.

Challenges
There are multiple challenges in this methodology, getting 
the failure data, vehicle IoT data and telematics data for 
the component level in the vehicle is challenging. The 
failure data and usage data can be retrieved for certain 
components or systems only, proliferating the captured 
data to other nearby components may affect the accuracy. 
As the electronification of vehicles are improving, the data 
from each vehicle system will be available in digital form, 
which will be used for the reliability calculation. It may take 
some more time, whereas this methodology can be used 
more in electric vehicles as there are fewer moving parts 
and most of the parts are electrified thus, capturing the data 
from each system will be much simpler and can be used for 
predicting the reliability of the system.

Conclusion
This method explores multiple opportunities to expedite 
the algorithm for various other use cases. The innovative 
part of this work is using the vehicle IoT data predicted using 
the current technique of machine learning method and the 
combinatorial optimization of the problem is solved using 
classical 0-1 knapsack dynamic programming technique is 
a unique attempt solving an automotive industry’s current 
problem. The method used in this paper is an experimental 
attempt to improve the provisional warranty cost calculation 
method and thus, improve the cost to customers using a 
powertrain system with four components. The results are 
encouraging after fixing multiple layers of data issues and 
now in a commendable state, it’s a continuous improvement 
journey that will take some more time to improve the 
accuracy of the data. For this problem, instead of considering 
as a 0-1 knapsack problem, the entire problem can be 
constructed as a deep learning model and can be optimized 
using multiple selection variables. In this method, we have 
used the classical mathematical model to solve the problem, 
which may take more time when the number of components 
increases. Thus, deep learning optimization methods will be 
best option to execute the problem in a shorter time span 
and better accuracy considering the volume of data.

Figure 4: Illustrative figure of dynamic programming algorithm 
working logic

Table 4: Filtered data of the selected configuration

Figure  5: Graph showing the optimized cost to customer for the 
target cost



328	 Chandrasekaran M et al.	 The Scientific Temper. Vol. 14, No. 2

References
Gallego, G., & Wang, R. (2014). Multiproduct price optimization and 

competition under the nested logit model with product-
differentiated price sensitivities. Operations Research, 62(2), 
450-461.

Mayer, S., & Steinhardt, C. (2016). Optimal product line pricing in 
the presence of budget-constrained consumers. European 
Journal of Operational Research, 248(1), 219-233.

Mayer, S., Klein, R., & Seiermann, S. (2013). A simulation-based 
approach to price optimisation of the mixed bundling 
problem with capacity constraints. International Journal of 
Production Economics, 145(2), 584-598.

Qazizada, M. E., & Pivarčiová, E. (2018). Reliability of parallel and 
serial centrifugal pumps for dewatering in mining process. 
Acta Montanistica Slovaca, 23(2).

Rusiński, E., Dobosz, T., Grendysz, F., & Moczko, P. (2019). Selected 
Problems of Fatigue Testing of Automotive Drive Shafts. In 
Proceedings of the 14th International Scientific Conference: 
Computer Aided Engineering (pp. 627-635). Springer 
International Publishing.

Wilhelm, E., Hofer, J., & Cheah, L. (2017). Applying optimal choices 
for real powertrain and lightweighting technology options 
to passenger vehicles under uncertainty. Transport, 32(2), 
209-220.


