Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.08Keywords:
Cardiovascular diseases, Electrocardiogram, EfficientNetB0, Dense neural network, Dual-Modality model, Heart diseases, Coronary Heart Disease, Single-Modality models, Particle Swarm Optimization.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular diseases (CVDs) remain a leading global health concern, emphasizing the need for accurate and early diagnostic systems. This study introduces a hybrid deep learning model that leverages dual-modality data by integrating clinical tabular data and ECG images for heart disease prediction. Both datasets comprising clinical features and corresponding ECG images of the same individuals and these datasets are real—time datasets. Feature extraction from ECG images is conducted using a fine-tuned EfficientNetB0 convolutional neural network, while features from the clinical dataset are extracted using a Dense Neural Network (DNN). To enhance the model’s predictive performance and reduce dimensionality, Particle Swarm Optimization (PSO) is employed to select the most relevant features from the combined feature space. The proposed dual-modality model uses a fine-tuned DNN classifier, incorporating dense and dropout layers to prevent overfitting and improve generalizability. Extensive pre-processing techniques, including image augmentation and standardization of clinical features, were applied to ensure data quality. The model achieved an accuracy of 86.13%, precision of 87%, recall of 89%, and an F1-score of 88%, significantly outperforming traditional single-modality models. Additionally, it demonstrated strong discriminative capability with a ROC AUC of 0.93. These results highlight the effectiveness of combining diverse data types and optimizing feature selection using IPSO to support clinical decision-making in heart disease diagnosis.Abstract
How to Cite
Downloads
Similar Articles
- M. Balamurugan, A. Bharathiraja, An enhanced hybrid GCNN-MHA-GRU approach for symptom-to-medicine recommendation by utilizing textual analysis of customer reviews , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Infine Sinduja, P. Joesph Charles, A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Anli Suresh, Sandhiya M., Investment model on the causation of inclining attributes towards bank investment options in the investor’s portfolio , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Vinodini R, Ritha W, A green inventory model for deteriorating items while producing overtime with nonlinear cost and stock dependent demand , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

