A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.12Keywords:
Cloud Computing, Service Level Agreement, Attention, Bidirectional Gated Recurrent Unit, Weight-adaptive, Sparrow SearchDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
With the evolution of cloud computing (CC) technologies, there is a growing insistence for the maximum utilization of cloud resources, therefore increasing the computing power consumption of cloud’s systems. Cloud’s Virtual Machines (VMs) consolidation imparts a practical mechanism to minimize energy consumption of cloud Data Centers (DC). Efficient consolidation and migration of VM in the absence of infringing Service Level Agreement (SLA) can be arrived at by making decisions proactively based on cloud’s future workload prediction. Efficient load balancing, another major issue of CC also depends on accurate forecasting of resource usage. Cloud workload traces reveal both periodic and non-periodic patterns with the unexpected peak of load. As a result, it is very demanding for the prediction models to accurately anticipate future workload. This prompted us to propose a method called, Attention Bidirectional Gated and Weight-adaptive Sparrow Search Optimization (ABiG-WSSO) to accurately forecast future workload with minimal makespan and overhead. The proposed ABiG-WSSO method includes Attention Bidirectional Gated Recurrent Unit (ABiGRU) and Weight-adaptive Sparrow Search Optimization (WSSO). Attention Bidirectional Gated Recurrent Unit (ABiGRU) is initially designed that along with the use of Bidirectional Gated Recurrent Unit (BiGRU) and adaptation of attention mechanism aids in predicting future cloud load requirements accurately. Next, Weight-adaptive Sparrow Search Optimization (WSSO) algorithm is employed in fine-tuning the parameters of the ABiGRU model for accurate and optimal load balancing performance. The WSSO algorithm is applied to optimize ABiGRU model hyperparameters (i.e. learning rate), to enhance its prediction accuracy. Comprehensive simulations are carried out using the gwa-bitbrains dataset to verify the efficiency of the proposed ABiG-WSSO method in boosting the distribution of resources and cloud load balancing. The proposed method achieves comparatively better results in terms of better makespan time, energy consumption, associated overhead and throughput.Abstract
How to Cite
Downloads
Similar Articles
- V. Selvi, T. S. Poornappriya, R. Balasubramani, Cloud computing research productivity and collaboration: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Baby Deepa, R. Jeya, Dynamic resource allocation with otpimization techniques for qos in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Aruljothi Rajasekaran, Jemima Priyadarsini R., ECDS: Enhanced Cloud Data Security Technique to Protect Data Being Stored in Cloud Infrastructure , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

