Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.09Keywords:
MANET, Sybil attack, AdaBagging, Ensemble regressive arboretum, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Independent wireless communication is possible in a "mobile ad hoc network" regardless of any predefined administrative or physical framework. The comprehensive enhancement of services for these networks depends on protecting their interactions. The Sybil attack creates numerous counterfeit identities to disrupt the system's remote functionalities. Implementing a security plan necessitates the establishment of a trust model that delineates the confidence relationships among entities. The trust structure in mobile ad hoc network security has been extensively researched. Mobile ad hoc networks are intrinsically more vulnerable to security breaches than wired networks because of their wireless characteristics. The primary factors contributing to this are energy limitations and security vulnerabilities. A comprehensive methodology has been established to improve the identification of Sybil attacks in MANETs. The system employs two advanced machine learning approaches, Ensemble Regressive Arboretum and AdaBagging, alongside network-feature extraction. Numerous trust models have been developed by integrating AdaBagging and the Ensemble Regressive Arboretum, while most known approaches rely on a singular framework. A Sybil assault transpires when a few numbers of individuals masquerade as numerous peers to obtain unauthorized access to a significant portion of the system. This research employs a machine learning methodology to identify Sybil attacks in MANETs by collecting network metrics such as traffic characteristics, communication patterns, and node activities.Abstract
How to Cite
Downloads
Similar Articles
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

