Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.09Keywords:
MANET, Sybil attack, AdaBagging, Ensemble regressive arboretum, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Independent wireless communication is possible in a "mobile ad hoc network" regardless of any predefined administrative or physical framework. The comprehensive enhancement of services for these networks depends on protecting their interactions. The Sybil attack creates numerous counterfeit identities to disrupt the system's remote functionalities. Implementing a security plan necessitates the establishment of a trust model that delineates the confidence relationships among entities. The trust structure in mobile ad hoc network security has been extensively researched. Mobile ad hoc networks are intrinsically more vulnerable to security breaches than wired networks because of their wireless characteristics. The primary factors contributing to this are energy limitations and security vulnerabilities. A comprehensive methodology has been established to improve the identification of Sybil attacks in MANETs. The system employs two advanced machine learning approaches, Ensemble Regressive Arboretum and AdaBagging, alongside network-feature extraction. Numerous trust models have been developed by integrating AdaBagging and the Ensemble Regressive Arboretum, while most known approaches rely on a singular framework. A Sybil assault transpires when a few numbers of individuals masquerade as numerous peers to obtain unauthorized access to a significant portion of the system. This research employs a machine learning methodology to identify Sybil attacks in MANETs by collecting network metrics such as traffic characteristics, communication patterns, and node activities.Abstract
How to Cite
Downloads
Similar Articles
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

