Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.09Keywords:
MANET, Sybil attack, AdaBagging, Ensemble regressive arboretum, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Independent wireless communication is possible in a "mobile ad hoc network" regardless of any predefined administrative or physical framework. The comprehensive enhancement of services for these networks depends on protecting their interactions. The Sybil attack creates numerous counterfeit identities to disrupt the system's remote functionalities. Implementing a security plan necessitates the establishment of a trust model that delineates the confidence relationships among entities. The trust structure in mobile ad hoc network security has been extensively researched. Mobile ad hoc networks are intrinsically more vulnerable to security breaches than wired networks because of their wireless characteristics. The primary factors contributing to this are energy limitations and security vulnerabilities. A comprehensive methodology has been established to improve the identification of Sybil attacks in MANETs. The system employs two advanced machine learning approaches, Ensemble Regressive Arboretum and AdaBagging, alongside network-feature extraction. Numerous trust models have been developed by integrating AdaBagging and the Ensemble Regressive Arboretum, while most known approaches rely on a singular framework. A Sybil assault transpires when a few numbers of individuals masquerade as numerous peers to obtain unauthorized access to a significant portion of the system. This research employs a machine learning methodology to identify Sybil attacks in MANETs by collecting network metrics such as traffic characteristics, communication patterns, and node activities.Abstract
How to Cite
Downloads
Similar Articles
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

