Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.09Keywords:
MANET, Sybil attack, AdaBagging, Ensemble regressive arboretum, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Independent wireless communication is possible in a "mobile ad hoc network" regardless of any predefined administrative or physical framework. The comprehensive enhancement of services for these networks depends on protecting their interactions. The Sybil attack creates numerous counterfeit identities to disrupt the system's remote functionalities. Implementing a security plan necessitates the establishment of a trust model that delineates the confidence relationships among entities. The trust structure in mobile ad hoc network security has been extensively researched. Mobile ad hoc networks are intrinsically more vulnerable to security breaches than wired networks because of their wireless characteristics. The primary factors contributing to this are energy limitations and security vulnerabilities. A comprehensive methodology has been established to improve the identification of Sybil attacks in MANETs. The system employs two advanced machine learning approaches, Ensemble Regressive Arboretum and AdaBagging, alongside network-feature extraction. Numerous trust models have been developed by integrating AdaBagging and the Ensemble Regressive Arboretum, while most known approaches rely on a singular framework. A Sybil assault transpires when a few numbers of individuals masquerade as numerous peers to obtain unauthorized access to a significant portion of the system. This research employs a machine learning methodology to identify Sybil attacks in MANETs by collecting network metrics such as traffic characteristics, communication patterns, and node activities.Abstract
How to Cite
Downloads
Similar Articles
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

