Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.09Keywords:
MANET, Sybil attack, AdaBagging, Ensemble regressive arboretum, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Independent wireless communication is possible in a "mobile ad hoc network" regardless of any predefined administrative or physical framework. The comprehensive enhancement of services for these networks depends on protecting their interactions. The Sybil attack creates numerous counterfeit identities to disrupt the system's remote functionalities. Implementing a security plan necessitates the establishment of a trust model that delineates the confidence relationships among entities. The trust structure in mobile ad hoc network security has been extensively researched. Mobile ad hoc networks are intrinsically more vulnerable to security breaches than wired networks because of their wireless characteristics. The primary factors contributing to this are energy limitations and security vulnerabilities. A comprehensive methodology has been established to improve the identification of Sybil attacks in MANETs. The system employs two advanced machine learning approaches, Ensemble Regressive Arboretum and AdaBagging, alongside network-feature extraction. Numerous trust models have been developed by integrating AdaBagging and the Ensemble Regressive Arboretum, while most known approaches rely on a singular framework. A Sybil assault transpires when a few numbers of individuals masquerade as numerous peers to obtain unauthorized access to a significant portion of the system. This research employs a machine learning methodology to identify Sybil attacks in MANETs by collecting network metrics such as traffic characteristics, communication patterns, and node activities.Abstract
How to Cite
Downloads
Similar Articles
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

