A network for collaborative detection of intrusions in smart cities using blockchain technology
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.50Keywords:
intrusion detection, machine learning, artificial intelligence, cybersecurity, deep learningDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The field of cybersecurity has undergone significant transformation with the integration of machine learning (ML) and artificialAbstract
intelligence (AI) techniques into intrusion detection systems (IDS). This research article presents a comprehensive survey spanning
the past five years, exploring the symbiotic relationship between ML, AI, and intrusion detection. The survey traverses seminal studies,
methodologies, and results, shedding light on an evolving landscape characterized by innovation and advancement. The classification
report’s key metrics—precision, recall, F1-score, and support. High precision values point to accurate positive predictions, while recall
values showcase the model’s ability to capture true instances. The F1-score signifies the equilibrium between precision and recall. Thesemetrics collectively underscore the model’s proficiency in identifying and differentiating intrusion classes, reinforcing its real-worldapplicability. In conclusion, this research article presents a holistic view of ML and AI integration with intrusion detection, offeringinsights into innovative contributions and their implications for cybersecurity. While highlighting existing research gaps, the articleunderscores the potential of AI-driven intrusion detection systems and advocates for ongoing advancements to fortify digital securityagainst emerging threats.
How to Cite
Downloads
Similar Articles
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

