A network for collaborative detection of intrusions in smart cities using blockchain technology
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.50Keywords:
intrusion detection, machine learning, artificial intelligence, cybersecurity, deep learningDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The field of cybersecurity has undergone significant transformation with the integration of machine learning (ML) and artificialAbstract
intelligence (AI) techniques into intrusion detection systems (IDS). This research article presents a comprehensive survey spanning
the past five years, exploring the symbiotic relationship between ML, AI, and intrusion detection. The survey traverses seminal studies,
methodologies, and results, shedding light on an evolving landscape characterized by innovation and advancement. The classification
report’s key metrics—precision, recall, F1-score, and support. High precision values point to accurate positive predictions, while recall
values showcase the model’s ability to capture true instances. The F1-score signifies the equilibrium between precision and recall. Thesemetrics collectively underscore the model’s proficiency in identifying and differentiating intrusion classes, reinforcing its real-worldapplicability. In conclusion, this research article presents a holistic view of ML and AI integration with intrusion detection, offeringinsights into innovative contributions and their implications for cybersecurity. While highlighting existing research gaps, the articleunderscores the potential of AI-driven intrusion detection systems and advocates for ongoing advancements to fortify digital securityagainst emerging threats.
How to Cite
Downloads
Similar Articles
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.