
Abstract
The field of cybersecurity has undergone significant transformation with the integration of machine learning (ML) and artificial 
intelligence (AI) techniques into intrusion detection systems (IDS). This research article presents a comprehensive survey spanning 
the past five years, exploring the symbiotic relationship between ML, AI, and intrusion detection. The survey traverses seminal studies, 
methodologies, and results, shedding light on an evolving landscape characterized by innovation and advancement. The classification 
report’s key metrics—precision, recall, F1-score, and support. High precision values point to accurate positive predictions, while recall 
values showcase the model’s ability to capture true instances. The F1-score signifies the equilibrium between precision and recall. These 
metrics collectively underscore the model’s proficiency in identifying and differentiating intrusion classes, reinforcing its real-world 
applicability. In conclusion, this research article presents a holistic view of ML and AI integration with intrusion detection, offering 
insights into innovative contributions and their implications for cybersecurity. While highlighting existing research gaps, the article 
underscores the potential of AI-driven intrusion detection systems and advocates for ongoing advancements to fortify digital security 
against emerging threats.
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Introduction
In cybersecurity, integrating intrusion detection systems 
(IDS) with machine learning and artificial intelligence (AI) 
techniques has emerged as a transformative approach. This 
introduction initiates a comprehensive literature survey 

spanning the past five years, exploring the amalgamation of 
machine learning and AI within intrusion detection. Through 
a multitude of scholarly endeavors, this survey navigates 
the complexities of this fusion, revealing a landscape 
characterized by innovation and evolution. As we delve 
into the preceding half-decade, seminal studies come to the 
forefront, showcasing the effectiveness of machine learning 
and AI in intrusion detection.

This narrative exemplifies the work of Zhang et al. 
(2018), “Deep Learning-Based Intrusion Detection for 
Internet of Things,” which employs convolutional neural 
networks to uncover hidden patterns in internet of things 
(IoT) network traffic, unveiling anomalies indicative of 
intrusions. This narrative continues with Sharma et al. (2019) 
in “Federated Machine Learning for Intrusion Detection in 
IoT Networks,” introducing federated learning models that 
aggregate insights from edge devices to enhance detection 
accuracy while upholding data privacy. Chen et al. (2020) 
contribute with “Adversarial Machine Learning for Intrusion 
Detection Systems: A Comprehensive Review,” dissecting 
the interplay between adversarial machine learning and 
intrusion detection. This study finds resonance in Nguyen 
et al. (2021) with “Transfer Learning for Network Intrusion 
Detection: A Comprehensive Review,” emphasizing transfer 
learning’s capacity to confer adaptability across diverse 
network scenarios. Across domains, the significance of 
machine learning and AI is palpable. Goyal et al.’s (2022) 
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“AI-Enabled Anomaly Detection in Industrial Control 
Systems” underscores AI’s relevance in securing vital 
industrial control systems. In the sphere of edge computing, 
Wu et al. (2023) present “Federated Learning for Intrusion 
Detection in Edge Computing Environments,” introducing 
a tailored federated learning paradigm to enhance 
surveillance at the edge while conserving bandwidth.

Further insights emanate from Shah et al.’s (2019) 
“Machine Learning Techniques for Intrusion Detection: A 
Comprehensive Survey,” providing a holistic view of machine 
learning’s diverse applications in intrusion detection. 
Additionally, Bhuyan et al.’s (2020) “Machine Learning-Based 
Network Intrusion Detection: A Comprehensive Review” 
elaborates on the intricacies of employing machine learning 
across network layers for heightened security. Kumar et 
al. (2018) explore “Deep Learning for Network Intrusion 
Detection: A Survey,” presenting an in-depth analysis of 
deep learning techniques’ potential in detecting network 
intrusions. Similarly, Ali et al. (2020) investigate “Hybrid 
Intrusion Detection Systems: A Comprehensive Review,” 
offering insights into integrating various techniques to 
enhance detection accuracy. Within the intricate fabric 
of literature, Sgandurra et al.’s (2020) study “Multi-Layer 
Intrusion Detection: A Comprehensive Survey” underscores 
the importance of multi-layered approaches to intrusion 
detection. In the context of IoT security, Feriani et al. (2019) 
examine “Machine Learning Techniques for IoT Network 
Intrusion Detection: A Comprehensive Survey.” As we 
traverse this dynamic terrain of innovation and adaptation, 
the convergence of machine learning and AI with intrusion 
detection resonates as a symphony of progress. This 
literature survey weaves together a mosaic of research 
endeavors, illuminating the potential of these techniques 
as pillars of modern cybersecurity. From foundational 
deep learning insights to cutting-edge edge computing 
adaptations, these studies elucidate pathways that reinforce 
the heart of digital defense.

The comprehensive literature survey encapsulates a 
spectrum of research endeavors, interweaving an intricate 
tapestry where machine learning and AI are interlaced with 
intrusion detection. In a dynamic cybersecurity landscape, 
these techniques stand as sentinels of resilience. Spanning 
from deep network insights to edge surveillance, these 
studies illuminate pathways that fortify the foundations 
of modern cybersecurity. However, specific research gaps 
persist within this domain. Despite the wealth of studies 
emphasizing AI model interpretability and explainability, 
there is a lack of comprehensive investigation into their 
practical implementation within intrusion detection 
systems. Additionally, while adaptive defense mechanisms 
are acknowledged as essential, a research void remains in the 
development of holistic strategies that seamlessly integrate 
diverse adaptive learning techniques to create a responsive 
and robust defense against evolving threats. Addressing 

these gaps is imperative to maximize the efficacy and real-
world applicability of AI-driven intrusion detection systems.

Method of Research
As delineated above, the significance of Figure 1 lies in 
its role as a crucial element within the devised research 
methodology aimed at augmenting the efficiency and 
practical applicability of IDS driven by AI. With the objective 
of achieving this goal, the program encompasses a sequence 
of pivotal stages, each contributing to the formulation, 
assessment, and enhancement of the IDS. The process 
initiates with the importation of requisite libraries, including 
pandas for data manipulation and sklearn modules for 
machine learning functionalities. This initial phase involves 
the definition of pertinent column names that correspond 
to the data attributes, a foundational step in ensuring data 
integrity and alignment with the research objectives.

Subsequent to data preprocessing, the program 
transitions to data preparation tailored for machine learning. 
This involves the utilization of label mapping techniques 
to transform textual intrusion type labels into numerical 
equivalents. This transformation enables the conversion of 
categorical data into a format amenable to machine learning 
algorithms, thereby enabling accurate classification. The 
program advances to feature engineering, encompassing 
the extraction and selection of features. Columns deemed 
irrelevant, such as ‘label’ and ‘target,’ are excluded from 
consideration, as they do not contribute to the training 
process. Additionally, categorical columns like ‘protocol_
type,’ ‘service,’ and ‘flag’ undergo one-hot encoding, 
converting them into binary representation, thereby 
facilitating the model’s comprehension of categorical 
attributes.

Following feature engineering, the dataset undergoes 
division into training and testing subsets. This partitioning, 
executed through the employment of the train_test_split 
function, assumes a pivotal role in evaluating the model’s 
performance on unseen data, thus simulating real-
world scenarios. Central to the program’s function is the 
instantiation and training of a random forest classifier, 

Figure 1: Method of research for Ai-Driven intrusion detection 
system
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selected due to its capability to manage intricate data 
structures. The model is trained using the training subset 
of the dataset. Subsequently, the model’s performance is 
assessed by making predictions on the testing data. This 
evaluation culminates in the generation of a comprehensive 
classification report, encompassing metrics such as 
precision, recall, F1-score, and support for each intrusion 
class.

Results and Discussion
The provided classification report presents a comprehensive 
evaluation of the performance of an intrusion detection 
model. This model aims to enhance network security by 
accurately classifying different types of network intrusions. 
The report utilizes key metrics such as precision, recall, 
F1-score, and support to assess the model’s effectiveness in 
identifying and distinguishing between various classes of 
network activities, as shown in Table 1. Precision, a metric 
ranging from 0 to 1, quantifies the accuracy of the positive 
predictions made by the model. A precision value of 1.00 
indicates that the model makes very few false positive 
predictions – instances where it incorrectly labels a non-
intrusive activity as an intrusion.

In the context of intrusion detection, high precision is 
crucial as it minimizes the risk of false alarms, ensuring that 
the system’s alerts are reliable and actionable. Recall, also 
known as the true positive rate, gauges the model’s ability 
to identify actual instances of a specific class. A recall score 
of 1.00 signifies that the model captures almost all instances 
of a particular intrusion type. This is essential for ensuring 
that actual threats are not overlooked, as missed detections 
could lead to potential security breaches. High recall is vital 
in intrusion detection to minimize false negatives – instances 
where an intrusion goes unnoticed.

The F1-score, which is the harmonic mean of precision 
and recall, provides a balanced assessment of the model’s 
performance. An F1-score of 1.00 indicates that the model 
maintains an ideal equilibrium between precision and recall. 
This balance is critical for an intrusion detection system, as 
an overly cautious approach (high precision but low recall) 
might miss potential threats, while a lenient approach (high 
recall but low precision) could lead to numerous false alarms. 
The support value provides additional context by indicating 
the number of instances belonging to each class in the test 
dataset. This information helps interpret the significance of 
precision and recall scores for classes with varying levels of 
representation. For instance, classes with higher support 
have more instances, influencing the overall evaluation of 
the model’s performance.

The remarkable consistency of high precision, recall, and 
F1-score values across the various intrusion classes showcases 
the model’s competence in accurately categorizing diverse 
network activities. This level of performance is instrumental 
in real-world scenarios, where timely and accurate detection 

of network intrusions is paramount for maintaining data 
integrity and preventing security breaches. The overall 
accuracy of 0.99 underscores the model’s ability to make 
correct predictions on a wide range of instances. While 
accuracy is an essential metric, the comprehensive 
evaluation provided by precision, recall, and F1-score offers 
a more nuanced understanding of the model’s strengths 
and weaknesses.

Confusion Matrix 
The code provided generates a confusion matrix based on 
precision and support values to calculate true positives (TP) 
for each class as shown in Figure 2. The confusion matrix 
serves as a fundamental tool for evaluating the performance 
of classification models, offering insights into both true and 
predicted classifications across different classes. Each row 
of the matrix corresponds to instances in an actual class, 
while each column corresponds to instances in a predicted 
class. Notably, the diagonal elements, spanning from the 
top-left to the bottom-right, signify the TP for each class, 
denoting instances correctly classified as belonging to that 
class. Conversely, the non-diagonal elements represent 
instances that were misclassified. The computation of 
diagonal elements involves multiplying precision values by 
the support (number of instances) for each respective class.

The observations drawn from the matrix indicate 
a substantial presence of diagonal elements, implying 
elevated TP rates. This suggests proficient performance on 
the model’s part in accurately categorizing instances across 
diverse classes. The configuration of the confusion matrix as 
a whole underscores the model’s adeptness in discerning 
between different types of network intrusions. Furthermore, 

Table 1: Evaluation of classifier performance

Col Precision Recall F1-score Support

1.0 1.00 1.00 1.00 249

2.0 1.00 1.00 1.00 70

3.0 1.00 1.00 1.00 131

4.0 0.99 1.00 1.00 1925

5.0 1.00 1.00 1.00 14

6.0 1.00 1.00 1.00 65

7.0 0.94 0.94 0.94 154

8.0 0.87 0.76 0.81 62

9.0 1.00 1.00 1.00 189

10.0 1.00 1.00 1.00 143

11.0 1.00 1.00 1.00 924

12.0 1.00 1.00 1.00 147

13.0 1.00 1.00 1.00 209

accuracy 0.99 4282

macro avg 0.99 0.98 0.98 4282

weighted avg 0.99 0.99 0.99 4282
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the matrix values underscore that classes characterized by 
higher support values (such as class 4 with a support of 
1925) tend to exhibit a greater number of TP, aligning with 
expectations due to their larger representation within the 
dataset. Nevertheless, it’s imperative to acknowledge that 
while the confusion matrix provides valuable insights, it does 
not present a comprehensive view of model performance. 
While TP hold significance, metrics encompassing false 
positives, false negatives, precision, recall, and F1-score 
play vital roles in conducting a holistic evaluation of the 
model’s efficacy. The matrix visually elucidates the model’s 
performance per class, facilitating identifying areas that 
warrant further refinement or adjustment.

Precision Recall Curve
The provided code generates a precision-recall curve based 
on the calculated precision and recall values for different 
classes of a classification model as shown in Figure 3. The 
precision-recall curve is a graphical representation that 
helps to understand the trade-off between precision and 
recall for various threshold values. In the graph, each point 
on the curve represents a specific threshold value, which 
determines the classification decision boundary. Precision 
is plotted on the y-axis, and recall is plotted on the x-axis. 
Precision measures the proportion of correctly predicted 
positive instances among all instances classified as positive, 
while recall represents the proportion of correctly predicted 
positive instances among all actual positive instances. The 
curve shows that for some threshold values, the precision 
is relatively high, resulting in fewer false positives but 
potentially lower recall. In contrast, for other threshold 
values, the recall is higher at the cost of slightly lower 
precision. 

The curve’s shape illustrates the trade-off between these 
two metrics. The points on the curve are annotated with 
their corresponding threshold values, helping to identify 
the specific points of interest. The curve’s trajectory is 
influenced by the model’s performance on different classes, 

and it provides insights into the model’s ability to classify 
instances of each class accurately. In this specific precision-
recall curve, the points are mostly clustered in the upper-left 
corner, indicating that the model achieves high precision 
and recall simultaneously for various classes. This is an ideal 
scenario, suggesting that the model’s classification decisions 
have a good balance between accuracy and completeness 
across different classes.

F1 Curve
The provided code generates two bar plots to visualize the 
distribution of correctly predicted instances and misclassified 
instances across different classes in a classification model as 
shown in Figure 4. These plots help to understand how 
well the model performs for each class and identify classes 
where misclassifications are more prominent. The first bar 
plot displays the number of instances that were correctly 
predicted for each class. Each class is represented on the 
x-axis, and the corresponding number of correctly predicted 
instances is shown on the y-axis. This plot provides an 
overview of the model’s accuracy in terms of identifying 
instances belonging to different classes. The height of each 
blue bar represents the number of instances accurately 
classified for that class. The second bar plot is a stacked bar 
plot that visualizes the misclassified instances within each 
class. The blue part of the bars represents correctly predicted 
instances, and the red part represents misclassified 
instances. The height of the blue part indicates the number 
of instances correctly classified, while the height of the red 
part represents the number of instances misclassified for 
that class. This plot helps to pinpoint which classes have 
higher rates of misclassification.

In this context, the plots would provide insights into the 
model’s performance across the 13 classes. For instance, if a 
class has a significantly higher number of correctly predicted 
instances compared to misclassified instances, it suggests 
that the model is effective in identifying instances of that 
class. On the other hand, if a class has a larger red section 
relative to the blue section, it indicates that the model 
struggles to accurately classify instances belonging to 
that class. The visual representation of correctly predicted 
and misclassified instances for each class aids in assessing 
the model’s strengths and weaknesses in classifying 

Figure 2: Confusion matrix Figure 3: Precision recall curve
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different types of instances. It can help prioritize areas for 
improvement and guide further analysis to understand the 
reasons behind the misclassifications.

Training Accuracy
The provided code generates a learning curve that 
illustrates the relationship between the number of training 
examples and the accuracy of a machine learning model as 
shown in Figure 5. The learning curve is a valuable tool for 
understanding how well a model is likely to perform as the 
size of the training dataset increases. In this specific case, the 
x-axis of the plot represents the proportion of the training 
dataset used, ranging from 10 to 100%. The y-axis represents 
accuracy, which measures how well the model’s predictions 
match the true labels. The learning curve includes two lines: 
one for training accuracy and another for cross-validation 
accuracy. The “Training Accuracy” line shows how well the 
model performs on the training data as the dataset size 
increases. Initially, with a small training dataset, the model 
may achieve high accuracy due to memorizing the limited 
examples. As more data is added, the training accuracy may 
decrease slightly, as the model faces more diverse cases and 
avoids overfitting to noise in the training data.

The “Cross-validation Accuracy” line depicts how well 
the model generalizes to unseen data. With a small dataset, 
the cross-validation accuracy might be relatively low, as 
the model hasn’t learned enough patterns. As the dataset 
grows, the cross-validation accuracy generally improves, 

indicating that the model becomes more robust and capable 
of making accurate predictions on new data. The learning 
curve’s convergence of the two lines suggests that the 
model is learning effectively from the data. Suppose there’s 
a significant gap between the training and cross-validation 
accuracy lines. In that case, it might indicate overfitting 
(high training accuracy but poor cross-validation accuracy) 
or underfitting (low accuracy in both cases).

Conclusion
This research article undertook a comprehensive exploration 
of the integration of machine learning and AI techniques 
in the realm of IDS within the evolving cybersecurity 
landscape. Through an extensive literature survey spanning 
the past five years, a diverse range of studies were dissected, 
illuminating AI’s dynamic and innovative fusion with intrusion 
detection. The process of enhancing the effectiveness 
of intrusion detection systems using machine learning. 
The evaluation of the model’s performance elucidated 
its capacity to accurately identify and classify network 
intrusions. The provided analyses of classification reports, 
confusion matrices, precision-recall curves, F1 curves, 
and learning curves illuminated key facets of the model’s 
performance and its potential for real-world deployment. 
This research article unveiled the transformative potential 
of AI and machine learning in strengthening intrusion 
detection systems and fostering a resilient cybersecurity 
landscape. Amalgamating theoretical insights with practical 
implementations contributes to the ongoing discourse 
on enhancing network security and safeguarding against 
emerging threats.
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