Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach
Downloads
Published
Keywords:
Cardiovascular disease, Deep Learning, LRNN-LSTM, decision tree, XGBoost Ensemble, Voting-based Feature SelectionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular disease (CVD) causes the heart and blood vessels to fail, often resulting in death or stroke. Therefore, early automatic identification of CVD can rescue many lives. CVD identification and prognosis are essential clinical tasks to ensure precise classification results, which assist cardiologists in providing suitable patient treatment. The use of Deep Learning (DL) in the medical field is increasing as it can determine patterns in data. Despite that, CVD prediction is a profound challenge in clinical data analysis. Conventional methods cannot handle hidden patterns, leading to less accurate model predictions. There is a critical need for a new technique that can rapidly and reliably predict future outcomes in patients with CVD. To combat this issue, this research uses a benchmark dataset to present a Lightweight Recurrent Neural Network with a Long Short Term Memory (LRNN-LSTM) method for CVD. Initially, the Min-Max Batch Normalization (M2BN) method is used to verify the ideal margin of collected data values in the dataset. Secondly, they employed the Decision Tree (DT) technique to select the best gain attribute for predicting CVD. Furthermore, the XGBoost Ensemble Voting-based Feature Selection (XGB-EVFS) method determines the profound features of CVD. Then, our proposed LRNN-LSTM algorithm is used to categorize the CVD result to reduce misdiagnosis. The proposed system will develop a model that can accurately predict CVD to decrease mortality from cardiac disease. Therefore, the experiment analysis produces high classification accuracy, precision, and recall with fewer false scores than traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- Karthik Gangadhar, Prem Kumar N, Neuroprotective activity of alcoholic extract of Operculina turpethum roots in aluminum chloride-induced Alzheimer’s disease in rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

