Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach
Downloads
Published
Keywords:
Cardiovascular disease, Deep Learning, LRNN-LSTM, decision tree, XGBoost Ensemble, Voting-based Feature SelectionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular disease (CVD) causes the heart and blood vessels to fail, often resulting in death or stroke. Therefore, early automatic identification of CVD can rescue many lives. CVD identification and prognosis are essential clinical tasks to ensure precise classification results, which assist cardiologists in providing suitable patient treatment. The use of Deep Learning (DL) in the medical field is increasing as it can determine patterns in data. Despite that, CVD prediction is a profound challenge in clinical data analysis. Conventional methods cannot handle hidden patterns, leading to less accurate model predictions. There is a critical need for a new technique that can rapidly and reliably predict future outcomes in patients with CVD. To combat this issue, this research uses a benchmark dataset to present a Lightweight Recurrent Neural Network with a Long Short Term Memory (LRNN-LSTM) method for CVD. Initially, the Min-Max Batch Normalization (M2BN) method is used to verify the ideal margin of collected data values in the dataset. Secondly, they employed the Decision Tree (DT) technique to select the best gain attribute for predicting CVD. Furthermore, the XGBoost Ensemble Voting-based Feature Selection (XGB-EVFS) method determines the profound features of CVD. Then, our proposed LRNN-LSTM algorithm is used to categorize the CVD result to reduce misdiagnosis. The proposed system will develop a model that can accurately predict CVD to decrease mortality from cardiac disease. Therefore, the experiment analysis produces high classification accuracy, precision, and recall with fewer false scores than traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- Veena Pande, Manish Pande, MOLECULAR DIVERSITY OF ECTOMYCORRHIZAL FUNGI OF CENTRAL HIMALAYA OF INDIA: AN IMPORTANT COMPONENT OF FOREST ECOSYSTEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Sivakumar, S. Vijaya, Eco-epidemiology of prey and competitive predator species in the SEI model , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Deepa H. Dwivedi, Rubee Lata, R. B. Ram, EFFECT OF BIO-FERTILIZER AND ORGANIC MANURES ON YIELD AND QUALITY OF GUAVA CV. RED FLESHED , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Bayelign Abebe, Ayalew Ali, Linking globalization to commercial banks’ performance in Ethiopia , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vaishali Yeole, Rushikesh Yeole, Pradheep Manisekaran, Analysis and prediction of stomach cancer using machine learning , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

