Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach
Downloads
Published
Keywords:
Cardiovascular disease, Deep Learning, LRNN-LSTM, decision tree, XGBoost Ensemble, Voting-based Feature SelectionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular disease (CVD) causes the heart and blood vessels to fail, often resulting in death or stroke. Therefore, early automatic identification of CVD can rescue many lives. CVD identification and prognosis are essential clinical tasks to ensure precise classification results, which assist cardiologists in providing suitable patient treatment. The use of Deep Learning (DL) in the medical field is increasing as it can determine patterns in data. Despite that, CVD prediction is a profound challenge in clinical data analysis. Conventional methods cannot handle hidden patterns, leading to less accurate model predictions. There is a critical need for a new technique that can rapidly and reliably predict future outcomes in patients with CVD. To combat this issue, this research uses a benchmark dataset to present a Lightweight Recurrent Neural Network with a Long Short Term Memory (LRNN-LSTM) method for CVD. Initially, the Min-Max Batch Normalization (M2BN) method is used to verify the ideal margin of collected data values in the dataset. Secondly, they employed the Decision Tree (DT) technique to select the best gain attribute for predicting CVD. Furthermore, the XGBoost Ensemble Voting-based Feature Selection (XGB-EVFS) method determines the profound features of CVD. Then, our proposed LRNN-LSTM algorithm is used to categorize the CVD result to reduce misdiagnosis. The proposed system will develop a model that can accurately predict CVD to decrease mortality from cardiac disease. Therefore, the experiment analysis produces high classification accuracy, precision, and recall with fewer false scores than traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. K. DUTTA, M.K. GHOSH, B. CHOUDHURI, B.B. BINDROO, ACREMONIUM ROSEOGRISEUM - A NEW FUNGAL PATHOGEN OF MULBERRY (MORUS ALBA L.) FROM AIZAWL (MIZORAM) , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Neeraj, Anita Singhrova, A critical review of blockchain-based authentication techniques , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

