Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach
Downloads
Published
Keywords:
Cardiovascular disease, Deep Learning, LRNN-LSTM, decision tree, XGBoost Ensemble, Voting-based Feature SelectionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular disease (CVD) causes the heart and blood vessels to fail, often resulting in death or stroke. Therefore, early automatic identification of CVD can rescue many lives. CVD identification and prognosis are essential clinical tasks to ensure precise classification results, which assist cardiologists in providing suitable patient treatment. The use of Deep Learning (DL) in the medical field is increasing as it can determine patterns in data. Despite that, CVD prediction is a profound challenge in clinical data analysis. Conventional methods cannot handle hidden patterns, leading to less accurate model predictions. There is a critical need for a new technique that can rapidly and reliably predict future outcomes in patients with CVD. To combat this issue, this research uses a benchmark dataset to present a Lightweight Recurrent Neural Network with a Long Short Term Memory (LRNN-LSTM) method for CVD. Initially, the Min-Max Batch Normalization (M2BN) method is used to verify the ideal margin of collected data values in the dataset. Secondly, they employed the Decision Tree (DT) technique to select the best gain attribute for predicting CVD. Furthermore, the XGBoost Ensemble Voting-based Feature Selection (XGB-EVFS) method determines the profound features of CVD. Then, our proposed LRNN-LSTM algorithm is used to categorize the CVD result to reduce misdiagnosis. The proposed system will develop a model that can accurately predict CVD to decrease mortality from cardiac disease. Therefore, the experiment analysis produces high classification accuracy, precision, and recall with fewer false scores than traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

