A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.06Keywords:
Assistant Professor, Department of Information Technology, Bishop Heber College(Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620024, TamilnaduDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The challenge of high-dimensional feature spaces and redundant attributes significantly impacts classification performance in medical datasets. Addressing this, the proposed Enhanced Correlation Attribute Evaluation (E-CAE) method effectively integrates multiple correlation measures such as Pearson, Spearman, Kendall, Biweight Midcorrelation, and Distance Correlation to rank and select the most relevant features. This hybrid feature selection technique was rigorously tested on three datasets: the Darwin dataset, Parkinson’s speech dataset, and Dyslexia dataset. The E-CAE method demonstrated superior classification performance across various models, achieving a remarkable 95.64% accuracy on the Darwin dataset, 93.42% accuracy on the Parkinson’s dataset, and 90.86% accuracy on the Dyslexia dataset. These results notably outperformed traditional feature selection techniques. The novelty of this approach lies in its composite scoring mechanism, which ensures robust feature evaluation and significantly enhances classification accuracy across diverse biomedical datasets.Abstract
How to Cite
Downloads
Similar Articles
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Heena Gulia, Sunder Singh Arya, Neha Yadav, Ajay Kumar, Monika Janaagal, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Yadav, Sudershan Singh, Reetu Verma, Strategies for adaptations and mitigation of abiotic stresses in crops: A review , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Hannah Ayaba Tanye, Henry Akwetey Matey, Isaac Asampana, Albert Akanlisikum Akanferi, Douglas Yeboah , Augustina Dede Agor, Assessing the information security awareness among Ghanaian University students , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Brigith Gladys L, J. Merline Vinotha, Sustainable rough multi-objective two-stage solid transportation problem of third-party e-commerce logistic providers with conditional fixed parameter on safety , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Naveen Kumar, Sunder S. Arya, Mamta Sawariya, Ajay Kumar, Neha Yadav, Jyoti Sharma, Himanshu Mehra, Unraveling the effect of salicylic acid on Vigna radiata L. under PEG- induced drought stress , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.