
Abstract
The challenge of high-dimensional feature spaces and redundant attributes significantly impacts classification performance in medical 
datasets. Addressing this, the proposed Enhanced Correlation Attribute Evaluation (E-CAE) method effectively integrates multiple 
correlation measures such as Pearson, Spearman, Kendall, Biweight Midcorrelation, and Distance Correlation to rank and select the 
most relevant features. This hybrid feature selection technique was rigorously tested on three datasets: the Darwin dataset, Parkinson’s 
speech dataset, and the Dyslexia dataset. The E-CAE method demonstrated superior classification performance across various models, 
achieving a remarkable 95.64% accuracy on the Darwin dataset, 93.42% accuracy on the Parkinson’s dataset, and 90.86% accuracy on 
the Dyslexia dataset. These results notably outperformed traditional feature selection techniques. The novelty of this approach lies in 
its composite scoring mechanism, which ensures robust feature evaluation and significantly enhances classification accuracy across 
diverse biomedical datasets.
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Introduction
The fields of healthcare along with other domains benefit 
significantly from machine learning (ML) and artificial 
intelligence (AI) advancements because they produce 
efficient data-driven methods to identify diseases (Kasthuri 
and Jency 2020; Reddy et al., 2023; Khalifa et al., 2024; 
Faiyazuddin et al., 2025). Early diagnosis of neurological 
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disorders, including dyslexia, Parkinson’s disease, and 
Alzheimer’s disease, is essential for prompt medical 
intervention and improved treatment outcomes (Usman 
et al., 2021; Jha & Kumar, 2024). The standard diagnostic 
approach employs clinical examinations alongside expert 
opinions for testing which requires considerable time and 
demonstrates subjectivity as well as human operational 
mistakes. The increasing availability of high-dimensional 
medical datasets offers opportunities to apply machine 
learning techniques to automate and enhance disease 
detection processes (Hider et al., 2024). However, leveraging 
these datasets effectively poses significant challenges, 
including high dimensionality, class imbalance, and the need 
for interpretability in decision-making (Gholampour 2024; 
Wilson & Anwar 2024).

High dimensionality is a common issue in medical 
datasets, where many features or variables are collected 
for analysis (Zebari et al., 2020). While high-dimensional 
data can capture complex patterns, it often contains 
redundant or irrelevant features that may negatively 
impact model performance (Chin et al., 2024). The label 
“curse of dimensionality” describes a problem that causes 
models to experience higher complexity in computation 
alongside increased potential to incorrectly learn noise 
patterns instead of true relationships. Feature selection 
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techniques help solve the issue by pinpointing essential 
features so models become more dimensionally reduced 
while achieving better generalizability (Ali et al., 2024). The 
process of choosing superior features presents an intricate 
challenge due to the need to find the right balance between 
model ease and predictive performance achievement.

Class imbalance is another critical challenge in medical 
data analysis. In many healthcare applications, datasets 
contain disproportionately fewer samples of diseased 
individuals compared to healthy controls (Kitova et al., 
2024). Machine learning models experience an unbalanced 
distribution that promotes the majority class and adversely 
affects their ability to identify significant but uncommon 
healthcare circumstances. Traditional classifiers show 
substandard performance in detecting minority class 
instances while achieving high overall accuracy because 
they ignore the class imbalance problem. Techniques 
such as oversampling, undersampling, and cost-sensitive 
learning have been explored to mitigate class imbalance, 
yet these approaches have limitations, including increased 
computational costs and the risk of overfitting (Kavitha & 
Kasthuri 2024).

Several studies have attempted to address these 
challenges through innovative machine-learning techniques. 
An online gamified test was developed for predicting 
dyslexia risk using random forest classifiers, achieving 78% 
accuracy (Luz Rello et al. 2020). The proposal offered an easy-
to-use dyslexia screening solution yet faced limitations due 
to the sophisticated machine learning system complexity 
and requirement of substantial datasets. A bio-inspired 
method that uses a genetic algorithm (GA) and binary 
particle swarm optimization (BPSO) was combined with 11 
ML classifiers for Parkinson’s disease classification (Akram 
and Latha 2020). They achieved 89% accuracy but faced 
challenges related to high computational time due to 
iterative convergence processes.

Feature selection-based machine learning models 
were introduced for Parkinson’s disease prediction using 
Boruta, RFE, and Random Forest algorithms, achieving 
82.35% accuracy (Nazmun Nahar et al. 2021). While effective, 
these methods risk overfitting and can be computationally 
expensive. Faisal et al. (2022) enhanced Parkinson’s disease 
prediction by integrating principal component analysis 
(PCA) achieving an accuracy of 88.33%. However, the 
wrapper-based feature selection methods used in their 
study resulted in high computational overhead.

For dyslexia detection, an ensemble learning technique 
was proposed by combining various ML models with 
feature selection methods like select k best and mutual 
information gain (Tabassum Jan et al. 2022). Their approach 
achieved 90% accuracy but lacked evaluation using F1-score 
metrics. Karim Gasmi et al. (2024) developed an adaptive 
genetic algorithm-based ensemble learning model for 

dyslexia prediction, attaining 90% accuracy. Despite its 
effectiveness, this method was computationally intensive. 
Shahriar Kaisar and Abdullahi Chowdhury (2022) explored 
the integration of oversampling and ensemble learning 
for imbalanced dyslexia datasets, achieving notable 
performance improvements. However, the full dataset 
training led to high computational costs (Vanitha and 
Kasthuri 2021).

Vectorial genetic programming (VEGP) is utilized 
for Alzheimer’s disease prediction through handwriting 
analysis, achieving 71% accuracy (Irene et al. 2024). VEGP 
demonstrated robustness by avoiding genetic drift but 
required fine-tuning, limiting scalability.

Despite significant advancements in ML and feature 
selection techniques, challenges persist in handling 
high-dimensional medical datasets, especially for disease 
detection tasks. Existing feature selection techniques, such 
as recursive feature elimination (RFE), Boruta, principal 
component analysis (PCA), and genetic algorithms (GA), 
have demonstrated varying degrees of success. However, 
these methods often struggle to balance the trade-off 
between dimensionality reduction and classification 
accuracy. Many traditional approaches primarily focus 
on linear correlations and fail to capture complex, non-
linear relationships between features and target variables. 
Additionally, techniques like wrapper-based methods, 
while effective in improving accuracy, are computationally 
expensive and unsuitable for large datasets. Class imbalance 
remains a critical issue, leading to biased models that favor 
majority classes. Furthermore, most advanced models lack 
transparency and interpretability, making it difficult for 
healthcare professionals to trust and adopt these solutions in 
clinical settings. There is a clear need for a feature selection 
method that can efficiently handle high-dimensional data, 
reduce overfitting, and improve interpretability while 
maintaining computational efficiency.

This research derives its motivation from healthcare’s 
increasing need for machine learning models that achieve 
both accuracy and interpretability. Dyslexia and Parkinson’s 
disease need early precise diagnoses to enable immediate 
treatment and appropriate interventions. However, 
existing machine learning models face limitations due 
to high-dimensional data, class imbalance, and lack of 
interpretability. These challenges hinder the practical 
implementation of automated diagnostic systems in clinical 
environments. The success of previous studies in applying 
machine learning techniques highlights the potential for 
data-driven solutions. Still, the consistent struggle with 
computational inefficiencies and the inability to fully 
exploit feature relationships necessitates a more robust 
approach. This research is driven by the need to develop a 
method that can overcome these limitations by effectively 
selecting relevant features, improving model performance, 



The Scientific Temper. Vol. 16, No. 2	 Vanitha and Kasthuri 	 3738

and ensuring interpretability, thereby contributing to 
advancements in medical diagnostics.

The primary objective of this research is to develop 
and evaluate an enhanced correlation attribute evaluation 
(E-CAE) method for effective feature selection and 
classification in high-dimensional medical datasets.

Proposed Work
The proposed research introduces the E-CAE method to 
address the limitations of traditional feature selection 
techniques in handling high-dimensional medical datasets. 
Figure 1 represents the overall workflow of the proposed 
E-CAE method. This method is designed to improve feature 
relevance assessment, reduce dimensionality, and enhance 
classification performance.

2.1 Multi-Correlation Metric Integration
To assess feature relevance comprehensively, E-CAE 
employs multiple correlation measures. These 
metrics are designed to capture various relationships 
between feature variables and the target class.

•	 2.1.1 Pearson Correlation Coefficient (PCC)
PCC functions as a common statistical tool that evaluates 
both the strength and direction of a linear connection 
between two variables that exist on continuous value scales. 
Within feature selection applications the PCC establishes the 
linear relationship strength between feature 

iX  and target variable Y . Linear correlation strength 
between feature and target information rises when the 
absolute Pearson coefficient value increases. To determine 
essential predictors for supervised learning tasks this 
evaluation method delivers valuable insights about 
feature contributions. The Pearson correlation coefficient 
connecting feature iX  to the target variable, Y  exists in 
the form of equation 1
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In this equation, 

( )Cov ,iX Y  represents the covariance between feature 

iX  and the target variable Y, while 

iXσ  and Yσ  denote the standard deviations of 

iX  and ,Y  respectively. 

•	 2.1.2 Spearman Rank Correlation (SRC)
Non-parametric statistical analysis using SRC enables 
researchers to determine both the strength of monotonic 
associations and the direction of their relationship between 
two variables. The Spearman correlation evaluates rank 

order patterns while disregarding the evaluation of linear 
relationships that the Pearson correlation would perform. 
This monotonality capability of SRC makes it an ideal option 
for tracking linear and non-linear trends between target 
variables and features while evaluating high-dimensional 
medical datasets. The Spearman correlation coefficient 
between 

iX  metrically measured feature and target variable 
Y  is estimated through the formula above.,
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Here, jd  represents the difference between the ranks 

of the j-th observation in feature 

iX  and the corresponding rank in the target variable Y, 

and n is the total number of observations. 

•	 2.1.3 Kendall Rank Correlation (KRC)
The value τ  or KRC indicates a non-parametric statistic 
that measures both the strength and direction of two 
variable relationships. The Kendall correlation method 
focuses on ordinal variable associations while it differs from 
both Pearson’s linear association analysis and Spearman’s 
ranked-based monotonic correlation tests. This makes it 
highly suitable for datasets where relationships between 
features and target variables may not be linear or even 
strictly monotonic, such as in complex medical datasets.

The Kendall correlation coefficient between a feature 

iX  and the target variable Y is defined as:
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Figure 1: E-CAE flow diagram
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In this equation:
•	 C is the number of concordant pairs,
•	 D is the number of discordant pairs,
•	 n is the total number of data points.

•	 2.1.4 Biweight Midcorrelation (Bicor)
Bicor is a robust correlation measure that effectively reduces 
the influence of outliers and extreme values in the data. 
Unlike traditional correlation measures such as Pearson or 
Spearman, which can be sensitive to anomalies, Biweight 
Midcorrelation down-weights the impact of extreme 
observations, making it highly suitable for analyzing 
complex and noisy datasets. This property is particularly 
advantageous in high-dimensional medical datasets, where 
noisy or erroneous data can significantly distort traditional 
correlation metrics. The Biweight Midcorrelation between 
a feature iX  and the target variable Y is mathematically 
defined as:
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In this equation:

•	


iX  and Y  represent the medians of the feature iX  
and the target variable Y, respectively.  

•	  Xijw  and Yjw  are weight functions that down-

weight the influence of data points that are far from 
the median.  

•	 The weight function is defined as:
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and similarly for 

Yjw , where 

( )MAD iX  is the Median Absolute Deviation (MAD) of 

feature iX , a robust measure of statistical dispersion.

•	 2.1.5 Distance Correlation (dCor)
The statistical measure dCor expresses associations between 
datasets or random variables through linear relationships 
as well as non-linear associations. Distance correlation 
surpasses linear-only Pearson metrics by detecting wide-
ranging dependent relationships so it functions well in high-
dimensional heterogeneous datasets for feature selection. 
The distance correlation between a feature iX  and the 
target variable Y is defined as:

( ) ( )
( ) ( )
dCov ,

dCor ,
dCov , dCov ,

i
i

i i

X Y
X Y

X X Y Y
=

⋅
	 (5)

Here:

•	 ( )dCov ,iX Y  is the distance covariance between 

•	 iX  and Y.  

•	 ( )dCov ,i iX X  and 

•	 ( )dCov ,Y Y  represent the self-distance covariances 

of iX  and Y, respectively.
The distance covariance is calculated as:
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Where:

•	 jkA  and 

•	 jkB  are the centered distance matrices for 

•	 iX  and Y, respectively.  
•	 The distance matrices are computed by taking 

pairwise Euclidean distances between data points 
and then centering them using the following 
transformation:

•	

	 ( ),jk ij ik j kA d X X d d d⋅ ⋅ ⋅⋅= − − + 		  (7)

Similarly, for jkB :

	 ( ),jk j k j kB d Y Y d d d⋅ ⋅ ⋅⋅= − − + 		  (8)

Where:

•	 ( ),ij ikd X X  is the Euclidean distance between 
observations j and k for feature iX .  

•	 jd ⋅  and kd⋅  are the row and column means of the 
distance matrix, respectively.  

•	 d⋅⋅  is the grand mean of all distances.

The Distance Correlation coefficient ranges from 0 to 1:
•	 A value of 0 indicates complete independence 

between the feature 
•	 Xi and the target variable Y.  
•	 A value of 1 suggests a perfect dependency, which 

could be linear or non-linear.

Composite Scoring and Feature Ranking
In the E-CAE method, an essential step after computing 
various correlation coefficients is the integration of these 
metrics into a unified score. This unified score, known as 
the composite correlation score, serves as a comprehensive 
measure to rank features based on their overall relevance 
to the target variable. The process of composite scoring 
and feature ranking ensures that both linear and non-
linear relationships are considered, thereby enhancing the 
robustness of the feature selection process.
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Composite Scoring
The composite correlation score is calculated by aggregating 
the values from multiple correlation metrics: PCC, SRC, KRC, 
Bicor, and dCor. Each of these measures captures different 
aspects of the relationship between a feature iX  and the 
target variable Y.

The composite score for each feature iX  is computed 
as a weighted sum of these correlation values:

composite score ( )
,1 , 2 3i X Yii X Y sX w w wρ ρ= ⋅ + ⋅ + ⋅

( ), 4 , , 5 ,
i iX Y bicor X Y iw w dCor X Yτ ρ+ ⋅ + ⋅      (9)

Where:

•	 ,iX Yρ  is the PCC.

•	 ,X Yisρ  
is the SRC.

•	 ,iX Yτ
 is the KRC.

•	 , ,ibicor X Yρ  is the Bicor.

•	 ( )dCor ,iX Y  is the dCor.

•	 1 2 3 4 5, , , ,w w w w w  are the weights assigned to each 
correlation metric.

In most cases, these weights are set equally to ensure 
that each metric contributes uniformly to the composite 
score: 	

1 2 3 4 5
1
5

w w w w w= = = = =

However, the weights can be adjusted to prioritize 
certain types of relationships depending on the dataset 
characteristics. For instance, in datasets with expected non-
linear patterns, higher weights can be assigned to distance 
correlation and Biweight Midcorrelation.

Feature Ranking
Once the composite scores are computed, the features are 
ranked in descending order based on these scores. This 
ranking directly reflects the relevance of each feature to the 
target variable. Higher composite scores indicate stronger 
associations, making those features more significant for 
predictive modeling.

Let the set of composite scores for all features be: 

( ) ( ) ( ){ }1 2Composite Scores CS ,CS , ,CS pX X X= …

Where p is the total number of features. The features are 
sorted according to their composite scores:

 ( ) ( )Rank argsort Composite ScoresiX = −

Statistical Significance Testing
The statistical significance test allows researchers to confirm 
the importance of chosen features among variables. The 

analysis calculates p-values regarding feature correlation. 
Since multiple tests are conducted the false discovery rate 
(FDR) must be used to control Type I errors. The Benjamini-
Hochberg (BH) procedure is applied for this purpose:

 
( )Adjusted p-values FDR Correction p-values=

Features with adjusted p-values below a significance 
threshold (e.g., 0.05) are considered statistically significant 
and are retained for further analysis.

Feature Selection
Based on the ranking and statistical significance, the top-
ranked features are selected. The selection criteria can be:

•	 A fixed number of top features (e.g., top 20 features).
•	 A threshold-based selection, where features with a 

composite score above a certain value are chosen.
•	 Significance-based selection, where features with 

adjusted p-values below the threshold are selected.
Let T be the set of selected features:

( ) ( ){   - 0.05}i i iT X CS X and P adjusted Xθ= ≥ <

Where:
•	 θ is a user-defined threshold for the composite score.
This selected set T of features is then used for model 

training, ensuring that only the most relevant and statistically 
significant features contribute to the predictive model.

Adaptive Thresholding with FDR Correction
In high-dimensional datasets, where numerous features 
are evaluated for relevance to the target variable, 
the likelihood of selecting irrelevant or spurious 
features increases. This problem, known as the multiple 
comparisons problem, can lead to misleading conclusions 
due to the accumulation of Type I errors (false positives). 
To address this issue, the enhanced correlation attribute 
evaluation (E-CAE) framework incorporates adaptive 
thresholding combined with false discovery rate (FDR) 
Correction to ensure that feature selection is both 
statistically rigorous and robust.

Adaptive Thresholding
Adaptive thresholding dynamically adjusts the feature 
selection criteria based on the statistical significance of the 
computed correlation metrics. Unlike fixed thresholding, 
where a pre-defined cutoff is applied to correlation scores, 
adaptive thresholding evaluates the statistical reliability of 
each feature’s association with the target variable.

After computing the composite correlation scores for 
each feature, a corresponding p-value is calculated to assess 
the likelihood that the observed correlation occurred by 
chance. Features with lower p-values are more likely to have 
a genuine association with the target variable. The adaptive 
threshold for selecting features is defined as: 	
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( ) ( ) } {  i i iT X CS X and Xθ α= ≥ <

were:
•	 T is the set of selected features.  
•	  ( )CS iX  is the composite score of the feature  iX  .  

•	 θ is the adaptive threshold for the composite score.  

•	 ( )ip X  is the p-value associated with the feature 

iX  .  
•	   is the significance level, typically set to 0.05.
However, evaluating multiple features increases the risk 

of false discoveries. To mitigate this risk, FDR Correction is 
applied to control for multiple comparisons.

False Discovery Rate (FDR) Correction
The FDR represents the expected proportion of incorrectly 
rejected null hypotheses (false positives) among all rejected 
hypotheses. Controlling the FDR is crucial in feature selection 
because it balances the trade-off between discovering 
meaningful features and limiting false discoveries.

The BH procedure adjusts p-values to account for the 
number of hypothesis tests, thereby reducing the likelihood 
of selecting features due to random chance. The Benjamini-
Hochberg procedure operates as follows:

1.	 Compute p-values:
For each feature  iX  , calculate the p-value  ip   from its 

correlation with the target variable.

2.	 Rank the p-values:  
Sort the p-values in ascending order:  ( ) ( ) ( )1 2 mp p p≤ ≤…≤

where  m   is the total number of features.

3.	 Calculate the BH critical value
For each sorted p-value  ( )ip  , compute the BH critical value:  

BHi
i
m

= ⋅

where  i  is the rank of the p-value and á   is the desired 
FDR level (commonly 0.05).

4.	 Identify significant features

Find the largest  i   such that: ( ) BHiip ≤

All features with p-values less than or equal to ( )ip   are 
considered statistically significant.

5.	 Adjust p-values
The adjusted p-values control the FDR, ensuring that only 
features with strong evidence of relevance are selected. The 
adjusted p-values are given by:

		
( )adj min ,1i

i
p m

p X
i
⋅ =  

 
. 		  (10)

This correction reduces the chance of false discoveries 
while retaining meaningful features.

Integration of Adaptive Thresholding and FDR 
Correction
In the E-CAE method, adaptive thresholding and FDR 
correction are integrated to form a two-step filtering 
process:

1. Initial feature filtering
Features are first filtered based on their Composite 
Correlation Scores. Only features with scores above the 
adaptive threshold θ proceed to the next step.

2. Statistical Validation
The FDR-corrected p-values are then used to validate the 
statistical significance of the remaining features. Features 
with  ( )adj ip X <   are retained.

The final feature selection set  S   is defined as:

( ) ( ){   }i i adj iS X CS X and p Xθ α= ≥ <

This dual filtering process ensures that only features 
with strong and statistically significant relationships to the 
target variable are selected, improving both the reliability 
and interpretability of the model.

Results and Discussion

Dataset Description
The proposed E-CAE method was rigorously evaluated 
using three distinct medical datasets: the Darwin dataset 
(Alzheimer) (Cilia et al., 2018), the Parkinson’s disease speech 
dataset (Dipayan 2019), and the dyslexia dataset (Rello 2020). 
These datasets were selected for their high dimensionality 
and varied complexity, which effectively test the scalability 
and performance of the proposed feature selection method. 
Each dataset presents unique challenges related to feature 
relevance, dimensionality reduction, and classification 
accuracy. Table 1 summarizes the datasets used in this study, 
providing detailed information on the number of features, 
total records, and data sources.

The Darwin dataset comprises 174 records with 451 
features and focuses on Alzheimer’s disease diagnosis. The 
Parkinson’s disease speech dataset includes 756 records 
with 754 features, capturing diverse speech signal features 
essential for diagnosing Parkinson’s disease. The dyslexia 

Table 1: Datasets summary

S. No Dataset # Features # Records

1 Alzheimer/Darwin dataset 451 174

2 Parkinson’s disease speech dataset 754 756

3 Dyslexia dataset 197 3,644
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dataset consists of 3,644 records and 197 features, designed 
for identifying individuals with dyslexia.

Analysis

Results for Alzheimer/Darwin Dataset
The performance evaluation of the proposed E-CAE 
framework on the Alzheimer/Darwin dataset demonstrates 
significant improvements across multiple classification 
models. The comparative analysis of classification results 
is presented in Table 2, highlighting the superiority of the 
E-CAE method over existing approaches (Figure 1).

The baseline model developed by Azzali et al. (2024) 
achieved an accuracy of 71% and a recall of 82%. However, 
it lacked comprehensive reporting on precision, F1-score, 
and ROC AUC, limiting a complete performance comparison. 
In contrast, the proposed E-CAE method consistently 
outperformed the baseline model across all evaluated 
classifiers.

The K-nearest neighbors (KNN) classifier, when integrated 
with the E-CAE method, achieved an accuracy of 77.36%. 
Notably, it attained a perfect precision score of 100%, 
indicating that all predicted positive cases were indeed 
correct. However, the recall was relatively lower at 52%, 
reflecting challenges in identifying all true positive cases. 
Despite this, the ROC AUC score reached 90.71%, showcasing 
the model’s strong discriminative power.

The Naive Bayes classifier exhibited a more balanced 
performance, achieving the highest accuracy of 86.79% 
among all classifiers. It reported a precision of 87.5%, a recall of 
84%, and an F1-score of 85.71%. The ROC AUC score was also 
robust at 86.64%, demonstrating the classifier’s effectiveness 
in distinguishing between positive and negative cases. This 
balanced performance across evaluation metrics emphasizes 
Naive Bayes as a highly effective model for the Alzheimer/
Darwin dataset when combined with E-CAE.

Logistic regression (LR) achieved an accuracy of 83.02%. 
It maintained a precision of 80.77%, a recall of 84%, and an F1 
score of 82.35%. The ROC AUC was notably high at 94.43%, 
indicating excellent model calibration and predictive 
capability. The marginally lower precision compared to 
Naive Bayes suggests a slightly higher rate of false positives, 
but overall, logistic regression exhibited strong classification 
performance.

The random forest (RF) and support vector machine 
(SVM) classifiers both achieved an accuracy of 84.91%, 
reflecting consistent performance. Both classifiers recorded 
identical precision, recall, and F1 scores of 84%, confirming 
their balanced classification strength. However, the ROC AUC 
for random forest was slightly higher at 95.64% compared 
to 95.29% for SVM. This indicates that random forest had a 
marginal advantage in distinguishing between the classes.

XGBoost produced an accuracy of 83.02%, with a 
precision of 83.33%, a recall of 80%, and an F1-score of 

81.63%. The ROC AUC of 92% reflects strong overall model 
performance, although slightly lower than random forest 
and SVM. XGBoost demonstrated effective classification 
but showed a slight trade-off between precision and recall.

The decision tree (DT) classifier performed comparatively 
lower, with an accuracy of 67.92%. It recorded a precision of 
66.67%, a recall of 64%, and an F1 score of 65.31%. The ROC 
AUC stood at 67.71%, indicating weaker discriminative ability. 
This result highlights the model’s limitations in handling 
high-dimensional data without robust feature selection, 
further emphasizing the necessity of more sophisticated 
classifiers in conjunction with E-CAE.

Results for Parkinson’s Disease Dataset
The classif ication per formance of the proposed 
E-CAE method on the Parkinson’s disease dataset is 
comprehensively analyzed and compared with existing 
methodologies in Table 3. This comparative analysis 
highlights the effectiveness of the E-CAE method in 
improving the classification outcomes across multiple 
classifiers (Figure 2).

Table 2: Comparative analysis of Alzheimer/Darwin classification 
results (%)

Classification 
techniques

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-score 
(%)

ROC 
AUC (%)

AZZALI ET 
AL., (2024)

71 - 82 - -

ECAE–KNN 77.36 100 52 68.42 90.71

ECAE–Naive 
Bayes

86.79 87.5 84 85.71 86.64

ECAE–LR 83.02 80.77 84 82.35 94.43

ECAE–RF 84.91 84 84 84 95.64

ECAE–SVM 84.91 84 84 84 95.29

ECAE – 
XGBoost

83.02 83.33 80 81.63 92

ECAE–DT 67.92 66.67 64 65.31 67.71

Figure 2: Comparative analysis of Alzheimer/Darwin classification 
results
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The benchmark studies conducted by Nazmun et al. (2021) 
and Faisal et al. (2022) reported accuracies of 82.35 and 
88.3%, respectively. Both studies demonstrated moderate 
performance but did not provide a comprehensive 
evaluation across all critical metrics, such as ROC AUC. In 
contrast, the E-CAE method, when paired with various 
classifiers, consistently yielded superior classification 
performance, showcasing its robustness in handling 
complex biomedical data.

Among the classifiers evaluated, the random forest (RF) 
classifier achieved the highest accuracy of 88.66%. This model 
also demonstrated a strong balance between sensitivity and 
specificity, as reflected in its recall of 96.39% and precision 
of 88.40%. The F1-score of 92.22% and a high ROC AUC of 
92.62% further confirm the model’s capacity to accurately 
distinguish between Parkinson’s and non-Parkinson’s cases. 
This result indicates the model’s efficiency in leveraging the 
feature space optimized by the E-CAE method.

The XGBoost classifier closely followed, with an accuracy 
of 87.67%, precision of 87.91%, and recall of 96.39%. Its F1-score 
of 91.95% and ROC AUC of 93.42% highlight its robustness in 
classification tasks, slightly outperforming random forest in 
terms of discriminative ability. This performance suggests that 
XGBoost, with its gradient boosting mechanism, effectively 
exploits the refined features selected by E-CAE to enhance 
classification accuracy.

The KNN classifier also showed competitive performance, 
achieving an accuracy of 87.22%. Its recall was notably high 
at 97.59%, indicating a strong ability to detect Parkinson’s 
cases. However, its precision was relatively lower at 86.63%, 
reflecting a higher false positive rate compared to Random 
Forest and XGBoost. The F1-score of 91.78% and ROC AUC 
of 90.11% affirm the model’s overall effectiveness, although 
with a slight compromise in precision.

LR achieved an accuracy of 86.78%, with precision 
and recall both recorded at 90.96%, leading to a balanced 
F1-score of 90.96%. Its ROC AUC of 90.49% demonstrates its 
strong discriminative capability. The model’s consistency 
across precision, recall, and F1-score indicates that logistic 
regression performs reliably with the feature set refined by 
the E-CAE method.

The SVM classifier attained an accuracy of 84.14%, with 
a precision of 82.83% and an exceptionally high recall of 
98.80%. This significant recall suggests that SVM was highly 
effective in identifying true positive cases of Parkinson’s 
disease. However, the lower precision resulted in an F1-score 
of 90.11% and an ROC AUC of 87.61%, indicating room for 
improvement in balancing false positives and negatives.

The DT classifier achieved an accuracy of 80.62%, with 
a precision of 87.65% and a recall of 85.54%. Its F1 score 
was 86.59%, and the ROC AUC stood at 76.38%. Although 
Decision Tree performance improved with the E-CAE 
method, it remained less effective compared to ensemble 

methods like Random Forest and XGBoost. This result 
suggests that Decision Tree models may struggle with 
the high-dimensional feature space, even after feature 
optimization.

The Naive Bayes classifier reported the lowest accuracy 
among the E-CAE models at 77.53%. However, it achieved 
a precision of 86.16% and a recall of 82.53%, resulting in 
an F1 score of 84.31%. Its ROC AUC was relatively low at 
74%, indicating limitations in its ability to separate classes 
effectively. This result suggests that the Naive Bayes classifier 
may not fully capitalize on the complex feature interactions 
captured by the E-CAE method.

Results for Dyslexia Dataset
The classification performance of the E-CAE method on 
the dyslexia dataset is presented and compared in Table 4. 
The results indicate varying levels of effectiveness across 
different classifiers, highlighting both the strengths and 
limitations of the E-CAE approach for dyslexia prediction 
(Figure 3).

Table 3: Comparative analysis of Parkinson’s classification results

Classification 
techniques

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-Score 
(%)

ROC AUC 
(%)

Nazmun et 
al., (2021)

82.35 80 83 82 -

Faisal et al., 
(2022)

88.3 88.3 88.3 88.3 -

ECAE–KNN 87.22 86.63 97.59 91.78 90.11

ECAE–Naive 
Bayes

77.53 86.16 82.53 84.31 74

ECAE–LR 86.78 90.96 90.96 90.96 90.49

ECAE–RF 88.66 88.40 96.39 92.22 92.62

ECAE–SVM 84.14 82.83 98.80 90.11 87.61

ECAE–
XGBoost

87.67 87.91 96.39 91.95 93.42

ECAE–DT 80.62 87.65 85.54 86.59 76.38

Figure 3: Comparative analysis of Parkinson’s classification results
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The benchmark studies conducted by Tabassum et al. 
(2023) and Vanitha & Kasthuri (2023) reported accuracies 
of 90.5 and 89.8%, respectively. However, the model by 
Vanitha & Kasthuri (2023) exhibited low precision at 54.2% 
and recall at 34.7%, which resulted in a modest F1-score of 
42.3%. This performance suggests challenges in effectively 
distinguishing between dyslexic and non-dyslexic cases, 
despite achieving high accuracy.

The E- CAE method, when integrated with LR, 
outperformed the benchmark models with an accuracy 
of 90.86%. It achieved a precision of 67.14%, indicating a 
balanced rate of correct positive predictions. However, the 
recall stood at 37.90%, reflecting moderate sensitivity in 
identifying dyslexic cases. The F1-score of 48.45% and ROC 
AUC of 84.27% demonstrate a well-rounded performance, 
confirming the model’s robustness in handling complex data 
distributions inherent in dyslexia datasets.

The XGBoost classifier closely followed, achieving an 
accuracy of 90.77%. Its precision was 75.56%, suggesting 
that most of the positive predictions were correct. However, 
its recall was limited to 27.42%, which slightly constrained 
its overall performance. Despite this, the F1-score of 40.24% 
and a higher ROC AUC of 86.74% highlight the model’s 
strong discriminatory ability, making it effective for dyslexia 
detection.

The RF classifier also delivered competitive results with 
an accuracy of 90.31%. Its precision was the highest among 
all classifiers at 78.13%, reflecting strong performance in 
predicting true positive cases. However, the recall dropped 
significantly to 20.16%, indicating challenges in capturing all 
dyslexic instances. The F1-score of 32.05% and an ROC AUC 
of 83.35% emphasize the model’s high precision but also its 
need for better sensitivity.

In contrast, the SVM classifier demonstrated an accuracy 
of 88.85%. Despite achieving a high precision of 75%, its 
recall was remarkably low at 2.42%, leading to a minimal 
F1-score of 4.69%. This outcome suggests that while SVM is 
highly conservative in predicting dyslexia, it fails to identify a 
significant portion of positive cases. The ROC AUC of 82.99% 
further indicates limited overall classification capability.

The performance of the KNN classifier was moderate, 
achieving an accuracy of 86.93%. Its precision was 36.62%, 
but the recall was relatively low at 20.97%, resulting in an 
F1-score of 26.67%. The ROC AUC of 75.80% reflects the 
model’s limited ability to differentiate between classes. This 
suggests that KNN struggled with the high-dimensional 
nature of the dataset, even after E-CAE feature optimization.

The DT classifier showed the lowest performance 
among the ensemble models, with an accuracy of 84.55%. 
Its precision of 31.40% and recall of 30.65% resulted in 
a balanced but low F1 score of 31.02%. Additionally, the 
ROC AUC of 61.04% reveals significant limitations in its 
classification ability. This suggests that the decision tree 

model could not effectively handle the complex and high-
dimensional feature space of the dyslexia dataset.

The most notable underperformance was observed with 
the Naive Bayes classifier. It recorded the lowest accuracy 
of 58.78%. Interestingly, its recall was quite high at 80.65%, 
which indicates that it was effective in identifying dyslexic 
cases. However, its precision was extremely low at 18.98%, 
suggesting a high false positive rate. The F1-score of 30.72% 
and ROC AUC of 69.20% highlight the model’s severe 
imbalance between sensitivity and specificity, limiting its 
overall effectiveness.

Discussion
The overall analysis of the E-CAE method across the 
Alzheimer/Darwin, Parkinson’s, and dyslexia datasets 
demonstrates its capability to improve classification 
performance through effective feature selection. However, 
the effectiveness of the feature selection is highly 
dependent on the classifier used. The study shows that no 

Table 4: Comparative analysis of dyslexia classification results

Classification 
Techniques

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-Score 
(%)

ROC 
AUC (%)

Tabassum et 
al. (2023)

90.5 - - - -

Vanitha & 
Kasthuri 
(2023)

89.8 54.2 34.7 42.3 84.20

ECAE – KNN 86.93 36.62 20.97 26.67 75.80

ECAE – NAIVE 
BAYES

58.78 18.98 80.65 30.72 69.20

ECAE – LR 90.86 67.14 37.90 48.45 84.27

ECAE – RF 90.31 78.13 20.16 32.05 83.35

ECAE – SVM 88.85 75 02.42 04.69 82.99

ECAE – 
XGBOOST

90.77 75.56 27.42 40.24 86.74

ECAE – DT 84.55 31.40 30.65 31.02 61.04

Figure 4: Comparative analysis of dyslexia classification results
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single classifier consistently outperformed others across all 
datasets, highlighting the complexity of feature selection 
and classification in medical datasets.

For the Alzheimer/Darwin dataset, the Naive Bayes 
classifier, combined with the E-CAE method, delivered the 
highest accuracy of 86.79%. This performance was closely 
followed by RF and SVM, both achieving an accuracy of 
84.91%. The high ROC AUC scores of 95.64% for RF and 
95.29% for SVM indicate strong classification capabilities, 
suggesting that ensemble and margin-based classifiers can 
effectively utilize the optimized features selected by E-CAE 
for this dataset.

In the Parkinson’s dataset, the Random Forest classifier 
again led with an accuracy of 88.66%, along with high 
precision and recall scores, demonstrating its robustness in 
handling high-dimensional data. XGBoost also performed 
exceptionally well, achieving an accuracy of 87.67% with 
a superior ROC AUC of 93.42%, highlighting its strength 
in leveraging gradient boosting for complex feature 
interactions. LR also demonstrated competitive performance 
with balanced precision and recall.

Conversely, the dyslexia dataset presented more 
challenges in achieving balanced classification performance. 
While Logistic Regression and XGBoost achieved the highest 
accuracies of 90.86 and 90.77%, respectively, these models 
struggled to maintain high recall rates. This imbalance 
suggests that, despite effective feature reduction, sensitivity 
in detecting dyslexia remains limited. Notably, Random 
Forest achieved the highest precision of 78.13%, but its 
recall was significantly lower, impacting overall detection 
performance.

Random Forest along with XGBoost demonstrated 
superior performance than other classifiers and E-CAE in all 
datasets because of both models’ exceptional capabilities 
to process complex high-dimensional data sets. However, 
logistic regression demonstrated a strong balance of 
performance and interpretability, especially for the dyslexia 
dataset. These results emphasize the importance of aligning 
feature selection methods with classifier characteristics to 
maximize predictive accuracy and model robustness across 
varying datasets.

Conclusion
The study introduced the E-CAE method, which effectively 
addressed the challenges of high-dimensional medical 
datasets through robust feature selection. The proposed 
method integrated multiple correlation metrics to evaluate 
feature relevance comprehensively. This multi-perspective 
evaluation improved the selection of informative attributes, 
contributing to better classification performance across 
various datasets. The experimental results showed that 
E-CAE brought substantial performance improvements to 
various classification techniques. The NB classifier showed its 

optimal performance on the Alzheimer/Darwin dataset with 
86.79% accuracy which exceeded standard methods. For the 
Parkinson’s dataset, the RF classifier obtained an accuracy 
of 88.66% and a high F1 score of 92.22%, demonstrating 
its robustness in handling complex and high-dimensional 
data. Similarly, in the dyslexia dataset, logistic regression 
and XGBoost achieved the highest accuracies of 90.86 
and 90.77%, respectively. Despite these promising results, 
the recall scores for dyslexia classification remained low, 
indicating difficulty in identifying all positive cases. The 
study highlighted the adaptability of the E-CAE method 
across diverse datasets and classifiers. Ensemble classifiers 
like RF and gradient boosting models such as XGBoost 
consistently delivered superior results, emphasizing their 
ability to exploit the informative features selected by 
E-CAE. However, classifiers like Naive Bayes and logistic 
regression provide a balance between performance and 
interpretability, which is essential for clinical applications.

One limitation of this work was the computational cost 
associated with calculating multiple correlation metrics, 
especially for large datasets with thousands of features. 
Additionally, the E-CAE method, while effective in feature 
reduction, did not fully resolve the recall imbalance observed 
in certain datasets, such as dyslexia. This limitation suggests 
the need for further optimization to balance precision and 
recall effectively.
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