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A robust feature selection approach for high-dimensional
medical data classification using enhanced correlation attribute
evaluation

G. Vanitha'*, M. Kasthuri?

Abstract

The challenge of high-dimensional feature spaces and redundant attributes significantly impacts classification performance in medical
datasets. Addressing this, the proposed Enhanced Correlation Attribute Evaluation (E-CAE) method effectively integrates multiple
correlation measures such as Pearson, Spearman, Kendall, Biweight Midcorrelation, and Distance Correlation to rank and select the
most relevant features. This hybrid feature selection technique was rigorously tested on three datasets: the Darwin dataset, Parkinson’s
speech dataset, and the Dyslexia dataset. The E-CAE method demonstrated superior classification performance across various models,
achieving a remarkable 95.64% accuracy on the Darwin dataset, 93.42% accuracy on the Parkinson’s dataset, and 90.86% accuracy on
the Dyslexia dataset. These results notably outperformed traditional feature selection techniques. The novelty of this approach lies in
its composite scoring mechanism, which ensures robust feature evaluation and significantly enhances classification accuracy across

diverse biomedical datasets.
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Introduction

The fields of healthcare along with other domains benefit
significantly from machine learning (ML) and artificial
intelligence (Al) advancements because they produce
efficient data-driven methods to identify diseases (Kasthuri
and Jency 2020; Reddy et al., 2023; Khalifa et al., 2024;
Faiyazuddin et al., 2025). Early diagnosis of neurological
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disorders, including dyslexia, Parkinson’s disease, and
Alzheimer’s disease, is essential for prompt medical
intervention and improved treatment outcomes (Usman
et al., 2021; Jha & Kumar, 2024). The standard diagnostic
approach employs clinical examinations alongside expert
opinions for testing which requires considerable time and
demonstrates subjectivity as well as human operational
mistakes. The increasing availability of high-dimensional
medical datasets offers opportunities to apply machine
learning techniques to automate and enhance disease
detection processes (Hider et al., 2024). However, leveraging
these datasets effectively poses significant challenges,
including high dimensionality, class imbalance, and the need
for interpretability in decision-making (Gholampour 2024;
Wilson & Anwar 2024).

High dimensionality is a common issue in medical
datasets, where many features or variables are collected
for analysis (Zebari et al., 2020). While high-dimensional
data can capture complex patterns, it often contains
redundant or irrelevant features that may negatively
impact model performance (Chin et al., 2024). The label
“curse of dimensionality” describes a problem that causes
models to experience higher complexity in computation
alongside increased potential to incorrectly learn noise
patterns instead of true relationships. Feature selection
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3737 A robust feature selection approach for high dimensional data using E-CAE

techniques help solve the issue by pinpointing essential
features so models become more dimensionally reduced
while achieving better generalizability (Ali et al., 2024). The
process of choosing superior features presents an intricate
challenge due to the need to find the right balance between
model ease and predictive performance achievement.

Class imbalance is another critical challenge in medical
data analysis. In many healthcare applications, datasets
contain disproportionately fewer samples of diseased
individuals compared to healthy controls (Kitova et al.,
2024). Machine learning models experience an unbalanced
distribution that promotes the majority class and adversely
affects their ability to identify significant but uncommon
healthcare circumstances. Traditional classifiers show
substandard performance in detecting minority class
instances while achieving high overall accuracy because
they ignore the class imbalance problem. Techniques
such as oversampling, undersampling, and cost-sensitive
learning have been explored to mitigate class imbalance,
yet these approaches have limitations, including increased
computational costs and the risk of overfitting (Kavitha &
Kasthuri 2024).

Several studies have attempted to address these
challenges through innovative machine-learning techniques.
An online gamified test was developed for predicting
dyslexia risk using random forest classifiers, achieving 78%
accuracy (LuzRello et al. 2020). The proposal offered an easy-
to-use dyslexia screening solution yet faced limitations due
to the sophisticated machine learning system complexity
and requirement of substantial datasets. A bio-inspired
method that uses a genetic algorithm (GA) and binary
particle swarm optimization (BPSO) was combined with 11
ML classifiers for Parkinson'’s disease classification (Akram
and Latha 2020). They achieved 89% accuracy but faced
challenges related to high computational time due to
iterative convergence processes.

Feature selection-based machine learning models
were introduced for Parkinson’s disease prediction using
Boruta, RFE, and Random Forest algorithms, achieving
82.35% accuracy (Nazmun Nahar et al. 2021). While effective,
these methods risk overfitting and can be computationally
expensive. Faisal et al. (2022) enhanced Parkinson’s disease
prediction by integrating principal component analysis
(PCA) achieving an accuracy of 88.33%. However, the
wrapper-based feature selection methods used in their
study resulted in high computational overhead.

For dyslexia detection, an ensemble learning technique
was proposed by combining various ML models with
feature selection methods like select k best and mutual
information gain (Tabassum Jan et al. 2022). Their approach
achieved 90% accuracy but lacked evaluation using F1-score
metrics. Karim Gasmi et al. (2024) developed an adaptive
genetic algorithm-based ensemble learning model for

dyslexia prediction, attaining 90% accuracy. Despite its
effectiveness, this method was computationally intensive.
Shahriar Kaisar and Abdullahi Chowdhury (2022) explored
the integration of oversampling and ensemble learning
for imbalanced dyslexia datasets, achieving notable
performance improvements. However, the full dataset
training led to high computational costs (Vanitha and
Kasthuri 2021).

Vectorial genetic programming (VEGP) is utilized
for Alzheimer’s disease prediction through handwriting
analysis, achieving 71% accuracy (Irene et al. 2024). VEGP
demonstrated robustness by avoiding genetic drift but
required fine-tuning, limiting scalability.

Despite significant advancements in ML and feature
selection techniques, challenges persist in handling
high-dimensional medical datasets, especially for disease
detection tasks. Existing feature selection techniques, such
as recursive feature elimination (RFE), Boruta, principal
component analysis (PCA), and genetic algorithms (GA),
have demonstrated varying degrees of success. However,
these methods often struggle to balance the trade-off
between dimensionality reduction and classification
accuracy. Many traditional approaches primarily focus
on linear correlations and fail to capture complex, non-
linear relationships between features and target variables.
Additionally, techniques like wrapper-based methods,
while effective in improving accuracy, are computationally
expensive and unsuitable for large datasets. Class imbalance
remains a critical issue, leading to biased models that favor
majority classes. Furthermore, most advanced models lack
transparency and interpretability, making it difficult for
healthcare professionals to trust and adopt these solutionsin
clinical settings. There is a clear need for a feature selection
method that can efficiently handle high-dimensional data,
reduce overfitting, and improve interpretability while
maintaining computational efficiency.

This research derives its motivation from healthcare’s
increasing need for machine learning models that achieve
both accuracy and interpretability. Dyslexia and Parkinson’s
disease need early precise diagnoses to enable immediate
treatment and appropriate interventions. However,
existing machine learning models face limitations due
to high-dimensional data, class imbalance, and lack of
interpretability. These challenges hinder the practical
implementation of automated diagnostic systems in clinical
environments. The success of previous studies in applying
machine learning techniques highlights the potential for
data-driven solutions. Still, the consistent struggle with
computational inefficiencies and the inability to fully
exploit feature relationships necessitates a more robust
approach. This research is driven by the need to develop a
method that can overcome these limitations by effectively
selecting relevant features, improving model performance,
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and ensuring interpretability, thereby contributing to
advancements in medical diagnostics.

The primary objective of this research is to develop
and evaluate an enhanced correlation attribute evaluation
(E-CAE) method for effective feature selection and
classification in high-dimensional medical datasets.

Proposed Work

The proposed research introduces the E-CAE method to
address the limitations of traditional feature selection
techniques in handling high-dimensional medical datasets.
Figure 1 represents the overall workflow of the proposed
E-CAE method. This method is designed to improve feature
relevance assessment, reduce dimensionality, and enhance
classification performance.

2.1 Multi-Correlation Metric Integration

To assess feature relevance comprehensively, E-CAE
employs multiple correlation measures. These
metrics are designed to capture various relationships
between feature variables and the target class.

e 2.1.1 Pearson Correlation Coefficient (PCC)
PCC functions as a common statistical tool that evaluates
both the strength and direction of a linear connection
between two variables that exist on continuous value scales.
Within feature selection applications the PCC establishes the
linear relationship strength between feature

X, and target variable Y . Linear correlation strength
between feature and target information rises when the
absolute Pearson coefficient value increases. To determine
essential predictors for supervised learning tasks this
evaluation method delivers valuable insights about
feature contributions. The Pearson correlation coefficient
connecting feature X, to the target variable, ¥ exists in
the form of equation 1

Cov(X,.,Y)

Px,y =

Z;(Xij -X;)(v;-7) 0

In this equation,

Cov(X;,Y) represents the covariance between feature

X, and the target variable Y, while

oy and oy, denote the standard deviations of

X, and Y, respectively.
e 2.1.2 Spearman Rank Correlation (SRC)
Non-parametric statistical analysis using SRC enables
researchers to determine both the strength of monotonic

associations and the direction of their relationship between
two variables. The Spearman correlation evaluates rank

Data Split Features:
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Remove Low- Standardize
\Variance Features, Numerical, Encode
(<Threshold) Categorical

Calculate Correlations (Pearson,

Spearman, Kendall, Biweight,

Distance) for each feature and
the target label

Compute Composite
Correlation Scores

Apply Statistical
Significance Tests
(Calculate p-values,
Apply FDR correction)

Train Classifiers E;;asl:i?it:r
(e.g. KNN, SVM) performance

Figure 1: E-CAE flow diagram
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order patterns while disregarding the evaluation of linear
relationships that the Pearson correlation would perform.
This monotonality capability of SRC makes it an ideal option
for tracking linear and non-linear trends between target
variables and features while evaluating high-dimensional
medical datasets. The Spearman correlation coefficient
between
X, metrically measured feature and target variable

1

Y is estimated through the formula above.,

6z:=1dj.

Py =l-——— @)
n(n2 —l)
Here, d; represents the difference between the ranks
of the j-th observation in feature

X, and the corresponding rank in the target variable Y,

and n is the total number of observations.

e 2.1.3 Kendall Rank Correlation (KRC)

The value 7 or KRC indicates a non-parametric statistic
that measures both the strength and direction of two
variable relationships. The Kendall correlation method
focuses on ordinal variable associations while it differs from
both Pearson’s linear association analysis and Spearman'’s
ranked-based monotonic correlation tests. This makes it
highly suitable for datasets where relationships between
features and target variables may not be linear or even
strictly monotonic, such as in complex medical datasets.
The Kendall correlation coefficient between a feature
X, and the target variable Y is defined as:

T:C——D (3)

%n(n—l)
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In this equation:

«  Cisthe number of concordant pairs,
«  Disthe number of discordant pairs,
« nisthe total number of data points.

e 2.1.4 Biweight Midcorrelation (Bicor)

Bicoris arobust correlation measure that effectively reduces
the influence of outliers and extreme values in the data.
Unlike traditional correlation measures such as Pearson or
Spearman, which can be sensitive to anomalies, Biweight
Midcorrelation down-weights the impact of extreme
observations, making it highly suitable for analyzing
complex and noisy datasets. This property is particularly
advantageous in high-dimensional medical datasets, where
noisy or erroneous data can significantly distort traditional
correlation metrics. The Biweight Midcorrelation between
a feature X, and the target variable Y is mathematically

defined as:
z] 1()(, X)(Y =7 )y wy
— n - 3)
I (LT ) S (A

In this equation:

Blcor X;, Y

X, and Y represent the medians of the feature X,
and the target variable Y, respectively.

. wy; and wy; are weight functions that down-

weight the influence of data points that are far from
the median.
«  The weight function is defined as:

2

—~ 2 —~
X;—X; X.—X;
Wy =| 1= — L~ for |—'—"—<1(4)
! 9-MAD(X,) 9-MAD(X;)

and similarly for
Wy 1 where

MAD(X;) is the Median Absolute Deviation (MAD) of
feature X, arobust measure of statistical dispersion.

e 2.1.5 Distance Correlation (dCor)

The statistical measure dCor expresses associations between
datasets or random variables through linear relationships
as well as non-linear associations. Distance correlation
surpasses linear-only Pearson metrics by detecting wide-
ranging dependent relationships so it functions well in high-
dimensional heterogeneous datasets for feature selection.
The distance correlation between a feature X, and the
target variable Y is defined as:

dCov(X,,Y)
,X;)-dCov(Y,Y)

dCor(X;,Y) =

JdCov (X,

Here:
dCov(X;,Y) is the distance covariance between

X; and Y.
dCov(X;,X;) and

dCov(Y, Y) represent the self-distance covariances

of X; andY, respectively.
The distance covariance is calculated as:

z, IZk AnBjk (6)

dCov

Where:

4 and

B, are the centered distance matrices for

X, and Y, respectively.

+ The distance matrices are computed by taking
pairwise Euclidean distances between data points
and then centering them using the following
transformation:

Ay =d(X;. Xy )=d; —d+d. 7)

Similarly, for Bjk'

By =d(Y,.Y,)-d; —d, +d. (8)
Where:
d(Xl],X ) is the Euclidean distance between

observations j and k for feature X .

Z and Z are the row and column means of the

distance matrix, respectively.
d_ isthe grand mean of all distances.

The Distance Correlation coefficient ranges from 0 to 1:

« A value of 0 indicates complete independence
between the feature

- Xand the target variable Y.

«  Avalue of 1 suggests a perfect dependency, which
could be linear or non-linear.

Composite Scoring and Feature Ranking

In the E-CAE method, an essential step after computing
various correlation coefficients is the integration of these
metrics into a unified score. This unified score, known as
the composite correlation score, serves as a comprehensive
measure to rank features based on their overall relevance
to the target variable. The process of composite scoring
and feature ranking ensures that both linear and non-
linear relationships are considered, thereby enhancing the
robustness of the feature selection process.
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Composite Scoring
The composite correlation score is calculated by aggregating
the values from multiple correlation metrics: PCC, SRC, KRC,
Bicor, and dCor. Each of these measures captures different
aspects of the relationship between a feature X, and the
target variable Y.

The composite score for each feature X, is computed
as a weighted sum of these correlation values:

composite score (X, ) =w "pX,-,Y‘ +w, -

st[_,y +wy-

|2+ 4 | Pricor, x|+ 5 - |dCor (X, 7)] - 9)

Where:
Px,y isthe PCC.

Py is the SRC.
. Yie  Tx.y isthe KRC.

. pbicor,Xf,Y is the Bicor.

dCor(X;,Y) is the dCor.

Wy, Wy, Wy, Wy, s are the weights assigned to each
correlation metric.

In most cases, these weights are set equally to ensure
that each metric contributes uniformly to the composite
score:

W =W, = W3 =Wy = Ws :%

However, the weights can be adjusted to prioritize
certain types of relationships depending on the dataset
characteristics. Forinstance, in datasets with expected non-
linear patterns, higher weights can be assigned to distance
correlation and Biweight Midcorrelation.

Feature Ranking

Once the composite scores are computed, the features are
ranked in descending order based on these scores. This
ranking directly reflects the relevance of each feature to the
target variable. Higher composite scores indicate stronger
associations, making those features more significant for
predictive modeling.

Let the set of composite scores for all features be:

Composite Scores = {CS(X1 ),CS(X, ),...,CS(XP )}

Where p is the total number of features. The features are
sorted according to their composite scores:

Rank (X; ) = argsort(—Composite Scores )

Statistical Significance Testing

The statistical significance test allows researchers to confirm
the importance of chosen features among variables. The

analysis calculates p-values regarding feature correlation.
Since multiple tests are conducted the false discovery rate
(FDR) must be used to control Type | errors. The Benjamini-
Hochberg (BH) procedure is applied for this purpose:

Adjusted p-values = FDR Correction (p-values)

Features with adjusted p-values below a significance
threshold (e.g., 0.05) are considered statistically significant
and are retained for further analysis.

Feature Selection
Based on the ranking and statistical significance, the top-
ranked features are selected. The selection criteria can be:
- Afixed number of top features (e.g., top 20 features).
«  Athreshold-based selection, where features with a
composite score above a certain value are chosen.
. Significance-based selection, where features with
adjusted p-values below the threshold are selected.
Let T be the set of selected features:

T ={X,|CS(X,)> 6 and P-adjusted (X,)<0.05}

Where:

- Bisauser-defined threshold for the composite score.

This selected set T of features is then used for model
training, ensuring that only the most relevant and statistically
significant features contribute to the predictive model.

Adaptive Thresholding with FDR Correction

In high-dimensional datasets, where numerous features
are evaluated for relevance to the target variable,
the likelihood of selecting irrelevant or spurious
features increases. This problem, known as the multiple
comparisons problem, can lead to misleading conclusions
due to the accumulation of Type | errors (false positives).
To address this issue, the enhanced correlation attribute
evaluation (E-CAE) framework incorporates adaptive
thresholding combined with false discovery rate (FDR)
Correction to ensure that feature selection is both
statistically rigorous and robust.

Adaptive Thresholding

Adaptive thresholding dynamically adjusts the feature
selection criteria based on the statistical significance of the
computed correlation metrics. Unlike fixed thresholding,
where a pre-defined cutoff is applied to correlation scores,
adaptive thresholding evaluates the statistical reliability of
each feature’s association with the target variable.

After computing the composite correlation scores for
each feature, a corresponding p-value is calculated to assess
the likelihood that the observed correlation occurred by
chance. Features with lower p-values are more likely to have
agenuine association with the target variable. The adaptive
threshold for selecting features is defined as:
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T={X,|CS(X,)>0 and (X,)<a}

were:
- Tisthe set of selected features.

-+ CS(X;) isthe composite score of the feature x, .
«  Oisthe adaptive threshold for the composite score.

. P(X,-) is the p-value associated with the feature
X, .
. o is the significance level, typically set to 0.05.
However, evaluating multiple features increases the risk
of false discoveries. To mitigate this risk, FDR Correction is

applied to control for multiple comparisons.

False Discovery Rate (FDR) Correction

The FDR represents the expected proportion of incorrectly
rejected null hypotheses (false positives) among all rejected
hypotheses. Controlling the FDRis crucial in feature selection
because it balances the trade-off between discovering
meaningful features and limiting false discoveries.

The BH procedure adjusts p-values to account for the
number of hypothesis tests, thereby reducing the likelihood
of selecting features due to random chance. The Benjamini-
Hochberg procedure operates as follows:

1. Compute p-values:
For each feature X, , calculate the p-value p, from its

correlation with the target variable.

2. Rank the p-values:

Sort the p-values in ascending order: P < Pp) <...< P(m)
where m is the total number of features.

3. Calculate the BH critical value
Foreach sorted p-value Py compute the BH critical value:
BH, =
m

where i is the rank of the p-value and a is the desired
FDR level (commonly 0.05).
4. Identify significant features
Find the largest i such that: P <BH,

All features with p-values less than or equal to Py are
considered statistically significant.

5. Adjust p-values

The adjusted p-values control the FDR, ensuring that only
features with strong evidence of relevance are selected. The
adjusted p-values are given by:

l

padj(Xi):min[pi:mﬂlj' (10)

This correction reduces the chance of false discoveries
while retaining meaningful features.

Integration of Adaptive Thresholding and FDR
Correction

In the E-CAE method, adaptive thresholding and FDR
correction are integrated to form a two-step filtering
process:

1. Initial feature filtering

Features are first filtered based on their Composite
Correlation Scores. Only features with scores above the
adaptive threshold 8 proceed to the next step.

2. Statistical Validation

The FDR-corrected p-values are then used to validate the
statistical significance of the remaining features. Features

with p,i(X;) < are retained.

The final feature selection set S is defined as:
S ={X,|CS(X,) = 0and p,; (X,) <}

This dual filtering process ensures that only features
with strong and statistically significant relationships to the
target variable are selected, improving both the reliability
and interpretability of the model.

Results and Discussion

Dataset Description

The proposed E-CAE method was rigorously evaluated
using three distinct medical datasets: the Darwin dataset
(Alzheimer) (Cilia et al., 2018), the Parkinson’s disease speech
dataset (Dipayan 2019), and the dyslexia dataset (Rello 2020).
These datasets were selected for their high dimensionality
and varied complexity, which effectively test the scalability
and performance of the proposed feature selection method.
Each dataset presents unique challenges related to feature
relevance, dimensionality reduction, and classification
accuracy. Table 1 summarizes the datasets used in this study,
providing detailed information on the number of features,
total records, and data sources.

The Darwin dataset comprises 174 records with 451
features and focuses on Alzheimer’s disease diagnosis. The
Parkinson’s disease speech dataset includes 756 records
with 754 features, capturing diverse speech signal features
essential for diagnosing Parkinson'’s disease. The dyslexia

Table 1: Datasets summary

S.No Dataset # Features # Records

1 Alzheimer/Darwin dataset 451 174
2 Parkinson’s disease speech dataset 754 756
3 Dyslexia dataset 197 3,644
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dataset consists of 3,644 records and 197 features, designed
for identifying individuals with dyslexia.

Analysis

Results for Alzheimer/Darwin Dataset

The performance evaluation of the proposed E-CAE
framework on the Alzheimer/Darwin dataset demonstrates
significant improvements across multiple classification
models. The comparative analysis of classification results
is presented in Table 2, highlighting the superiority of the
E-CAE method over existing approaches (Figure 1).

The baseline model developed by Azzali et al. (2024)
achieved an accuracy of 71% and a recall of 82%. However,
it lacked comprehensive reporting on precision, F1-score,
and ROC AUC, limiting a complete performance comparison.
In contrast, the proposed E-CAE method consistently
outperformed the baseline model across all evaluated
classifiers.

The K-nearest neighbors (KNN) classifier, when integrated
with the E-CAE method, achieved an accuracy of 77.36%.
Notably, it attained a perfect precision score of 100%,
indicating that all predicted positive cases were indeed
correct. However, the recall was relatively lower at 52%,
reflecting challenges in identifying all true positive cases.
Despite this, the ROC AUC score reached 90.71%, showcasing
the model’s strong discriminative power.

The Naive Bayes classifier exhibited a more balanced
performance, achieving the highest accuracy of 86.79%
among all classifiers. It reported a precision of 87.5%, a recall of
84%, and an F1-score of 85.71%. The ROC AUC score was also
robust at 86.64%, demonstrating the classifier’s effectiveness
in distinguishing between positive and negative cases. This
balanced performance across evaluation metrics emphasizes
Naive Bayes as a highly effective model for the Alzheimer/
Darwin dataset when combined with E-CAE.

Logistic regression (LR) achieved an accuracy of 83.02%.
It maintained a precision of 80.77%, a recall of 84%, and an F1
score of 82.35%. The ROC AUC was notably high at 94.43%,
indicating excellent model calibration and predictive
capability. The marginally lower precision compared to
Naive Bayes suggests a slightly higher rate of false positives,
but overall, logistic regression exhibited strong classification
performance.

The random forest (RF) and support vector machine
(SVM) classifiers both achieved an accuracy of 84.91%,
reflecting consistent performance. Both classifiers recorded
identical precision, recall, and F1 scores of 84%, confirming
their balanced classification strength. However, the ROC AUC
for random forest was slightly higher at 95.64% compared
t0 95.29% for SVM. This indicates that random forest had a
marginal advantage in distinguishing between the classes.

XGBoost produced an accuracy of 83.02%, with a
precision of 83.33%, a recall of 80%, and an F1-score of

81.63%. The ROC AUC of 92% reflects strong overall model
performance, although slightly lower than random forest
and SVM. XGBoost demonstrated effective classification
but showed a slight trade-off between precision and recall.

The decision tree (DT) classifier performed comparatively
lower, with an accuracy of 67.92%. It recorded a precision of
66.67%, a recall of 64%, and an F1 score of 65.31%. The ROC
AUC stood at 67.71%, indicating weaker discriminative ability.
This result highlights the model’s limitations in handling
high-dimensional data without robust feature selection,
further emphasizing the necessity of more sophisticated
classifiers in conjunction with E-CAE.

Results for Parkinson’s Disease Dataset

The classification performance of the proposed
E-CAE method on the Parkinson’s disease dataset is
comprehensively analyzed and compared with existing
methodologies in Table 3. This comparative analysis
highlights the effectiveness of the E-CAE method in
improving the classification outcomes across multiple
classifiers (Figure 2).

Table 2: Comparative analysis of Alzheimer/Darwin classification
results (%)

Classification  Accuracy Precision  Recall ~ F1-score  ROC
techniques (%) (%) (%) (%) AUC (%)
AZZALI ET 71 - 82 - -
AL., (2024)
ECAE-KNN  77.36 100 52 68.42 90.71
ECAE-Naive 86.79 87.5 84 85.71 86.64
Bayes
ECAE-LR 83.02 80.77 84 82.35 94.43
ECAE-RF 84.91 84 84 84 95.64
ECAE-SVM  84.91 84 84 84 95.29
ECAE - 83.02 83.33 80 81.63 92
XGBoost
ECAE-DT 67.92 66.67 64 65.31 67.71
120
100 2 1 = .
‘ 33 2 1
w0 T [ [ AREE fizge ]
§ 60
2
40
20
0
Accuracy Precision Recall Fl-Score ROC AUC
Metrics
WAZZALIET AL, (2024) mECAE —KNN ECAE —Naive Bayes
BECAE -LR BECAE —-RF ECAE -SVM
mECAE —XGBoost mECAE -DT

Figure 2: Comparative analysis of Alzheimer/Darwin classification
results
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The benchmark studies conducted by Nazmun et al. (2021)
and Faisal et al. (2022) reported accuracies of 82.35 and
88.3%, respectively. Both studies demonstrated moderate
performance but did not provide a comprehensive
evaluation across all critical metrics, such as ROC AUC. In
contrast, the E-CAE method, when paired with various
classifiers, consistently yielded superior classification
performance, showcasing its robustness in handling
complex biomedical data.

Among the classifiers evaluated, the random forest (RF)
classifier achieved the highest accuracy of 88.66%. This model
also demonstrated a strong balance between sensitivity and
specificity, as reflected in its recall of 96.39% and precision
of 88.40%. The F1-score of 92.22% and a high ROC AUC of
92.62% further confirm the model’s capacity to accurately
distinguish between Parkinson’s and non-Parkinson’s cases.
This result indicates the model’s efficiency in leveraging the
feature space optimized by the E-CAE method.

The XGBoost classifier closely followed, with an accuracy
of 87.67%, precision of 87.91%, and recall of 96.39%. Its F1-score
of 91.95% and ROC AUC of 93.42% highlight its robustness in
classification tasks, slightly outperforming random forest in
terms of discriminative ability. This performance suggests that
XGBoost, with its gradient boosting mechanism, effectively
exploits the refined features selected by E-CAE to enhance
classification accuracy.

The KNN classifier also showed competitive performance,
achieving an accuracy of 87.22%. Its recall was notably high
at 97.59%, indicating a strong ability to detect Parkinson’s
cases. However, its precision was relatively lower at 86.63%,
reflecting a higher false positive rate compared to Random
Forest and XGBoost. The F1-score of 91.78% and ROC AUC
of 90.11% affirm the model’s overall effectiveness, although
with a slight compromise in precision.

LR achieved an accuracy of 86.78%, with precision
and recall both recorded at 90.96%, leading to a balanced
F1-score of 90.96%. Its ROC AUC of 90.49% demonstrates its
strong discriminative capability. The model’s consistency
across precision, recall, and F1-score indicates that logistic
regression performs reliably with the feature set refined by
the E-CAE method.

The SVM classifier attained an accuracy of 84.14%, with
a precision of 82.83% and an exceptionally high recall of
98.80%. This significant recall suggests that SVM was highly
effective in identifying true positive cases of Parkinson'’s
disease. However, the lower precision resulted in an F1-score
of 90.11% and an ROC AUC of 87.61%, indicating room for
improvement in balancing false positives and negatives.

The DT classifier achieved an accuracy of 80.62%, with
a precision of 87.65% and a recall of 85.54%. Its F1 score
was 86.59%, and the ROC AUC stood at 76.38%. Although
Decision Tree performance improved with the E-CAE
method, it remained less effective compared to ensemble

methods like Random Forest and XGBoost. This result
suggests that Decision Tree models may struggle with
the high-dimensional feature space, even after feature
optimization.

The Naive Bayes classifier reported the lowest accuracy
among the E-CAE models at 77.53%. However, it achieved
a precision of 86.16% and a recall of 82.53%, resulting in
an F1 score of 84.31%. Its ROC AUC was relatively low at
74%, indicating limitations in its ability to separate classes
effectively. This result suggests that the Naive Bayes classifier
may not fully capitalize on the complex feature interactions
captured by the E-CAE method.

Results for Dyslexia Dataset

The classification performance of the E-CAE method on
the dyslexia dataset is presented and compared in Table 4.
The results indicate varying levels of effectiveness across
different classifiers, highlighting both the strengths and
limitations of the E-CAE approach for dyslexia prediction
(Figure 3).

Table 3: Comparative analysis of Parkinson’s classification results

Classification ~ Accuracy Precision Recall F1-Score ROCAUC
techniques (%) (%) (%) (%) (%)
Nazmun et 82.35 80 83 82 -

al., (2021)

Faisal et al., 88.3 88.3 88.3 88.3 -

(2022)

ECAE-KNN 87.22 86.63 9759 91.78 90.11

ECAE-Naive 77.53 86.16 82.53 8431 74
Bayes

ECAE-LR 86.78 90.96 90.96 90.96 90.49
ECAE-RF 88.66 88.40 96.39 9222 92.62
ECAE-SVM 84.14 82.83 98.80 90.11 87.61
ECAE- 87.67 87.91 9639 91.95 93.42
XGBoost

ECAE-DT 80.62 87.65 85.54 86.59 76.38
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The benchmark studies conducted by Tabassum et al.
(2023) and Vanitha & Kasthuri (2023) reported accuracies
of 90.5 and 89.8%, respectively. However, the model by
Vanitha & Kasthuri (2023) exhibited low precision at 54.2%
and recall at 34.7%, which resulted in a modest F1-score of
42.3%. This performance suggests challenges in effectively
distinguishing between dyslexic and non-dyslexic cases,
despite achieving high accuracy.

The E-CAE method, when integrated with LR,
outperformed the benchmark models with an accuracy
of 90.86%. It achieved a precision of 67.14%, indicating a
balanced rate of correct positive predictions. However, the
recall stood at 37.90%, reflecting moderate sensitivity in
identifying dyslexic cases. The F1-score of 48.45% and ROC
AUC of 84.27% demonstrate a well-rounded performance,
confirming the model’s robustness in handling complex data
distributions inherent in dyslexia datasets.

The XGBoost classifier closely followed, achieving an
accuracy of 90.77%. Its precision was 75.56%, suggesting
that most of the positive predictions were correct. However,
its recall was limited to 27.42%, which slightly constrained
its overall performance. Despite this, the F1-score of 40.24%
and a higher ROC AUC of 86.74% highlight the model’s
strong discriminatory ability, making it effective for dyslexia
detection.

The RF classifier also delivered competitive results with
an accuracy of 90.31%. Its precision was the highest among
all classifiers at 78.13%, reflecting strong performance in
predicting true positive cases. However, the recall dropped
significantly to 20.16%, indicating challenges in capturing all
dyslexic instances. The F1-score of 32.05% and an ROC AUC
of 83.35% emphasize the model’s high precision but also its
need for better sensitivity.

In contrast, the SVM classifier demonstrated an accuracy
of 88.85%. Despite achieving a high precision of 75%, its
recall was remarkably low at 2.42%, leading to a minimal
F1-score of 4.69%. This outcome suggests that while SVM is
highly conservative in predicting dyslexia, it fails to identify a
significant portion of positive cases. The ROC AUC of 82.99%
further indicates limited overall classification capability.

The performance of the KNN classifier was moderate,
achieving an accuracy of 86.93%. Its precision was 36.62%,
but the recall was relatively low at 20.97%, resulting in an
F1-score of 26.67%. The ROC AUC of 75.80% reflects the
model’s limited ability to differentiate between classes. This
suggests that KNN struggled with the high-dimensional
nature of the dataset, even after E-CAE feature optimization.

The DT classifier showed the lowest performance
among the ensemble models, with an accuracy of 84.55%.
Its precision of 31.40% and recall of 30.65% resulted in
a balanced but low F1 score of 31.02%. Additionally, the
ROC AUC of 61.04% reveals significant limitations in its
classification ability. This suggests that the decision tree

model could not effectively handle the complex and high-
dimensional feature space of the dyslexia dataset.

The most notable underperformance was observed with
the Naive Bayes classifier. It recorded the lowest accuracy
of 58.78%. Interestingly, its recall was quite high at 80.65%,
which indicates that it was effective in identifying dyslexic
cases. However, its precision was extremely low at 18.98%,
suggesting a high false positive rate. The F1-score of 30.72%
and ROC AUC of 69.20% highlight the model’s severe
imbalance between sensitivity and specificity, limiting its
overall effectiveness.

Discussion

The overall analysis of the E-CAE method across the
Alzheimer/Darwin, Parkinson’s, and dyslexia datasets
demonstrates its capability to improve classification
performance through effective feature selection. However,
the effectiveness of the feature selection is highly
dependent on the classifier used. The study shows that no

Table 4: Comparative analysis of dyslexia classification results

Classification ~ Accuracy Precision Recall F1-Score ROC

Techniques (%) (%) (%) (%) AUC (%)
Tabassumet  90.5 - - -

al. (2023)

Vanitha & 89.8 54.2 347 423 84.20
Kasthuri

(2023)

ECAE - KNN 86.93 36.62 20.97 26.67 75.80

ECAE - NAIVE 58.78 18.98 80.65 30.72 69.20
BAYES

ECAE-LR 90.86 67.14 3790 48.45 84.27
ECAE -RF 90.31 78.13 20.16  32.05 83.35
ECAE-SVM 88.85 75 0242 04.69 82.99
ECAE - 90.77 75.56 2742 40.24 86.74
XGBOOST

ECAE-DT 84.55 31.40 3065 31.02 61.04
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single classifier consistently outperformed others across all
datasets, highlighting the complexity of feature selection
and classification in medical datasets.

For the Alzheimer/Darwin dataset, the Naive Bayes
classifier, combined with the E-CAE method, delivered the
highest accuracy of 86.79%. This performance was closely
followed by RF and SVM, both achieving an accuracy of
84.91%. The high ROC AUC scores of 95.64% for RF and
95.29% for SVM indicate strong classification capabilities,
suggesting that ensemble and margin-based classifiers can
effectively utilize the optimized features selected by E-CAE
for this dataset.

In the Parkinson’s dataset, the Random Forest classifier
again led with an accuracy of 88.66%, along with high
precision and recall scores, demonstrating its robustness in
handling high-dimensional data. XGBoost also performed
exceptionally well, achieving an accuracy of 87.67% with
a superior ROC AUC of 93.42%, highlighting its strength
in leveraging gradient boosting for complex feature
interactions. LR also demonstrated competitive performance
with balanced precision and recall.

Conversely, the dyslexia dataset presented more
challenges in achieving balanced classification performance.
While Logistic Regression and XGBoost achieved the highest
accuracies of 90.86 and 90.77%, respectively, these models
struggled to maintain high recall rates. This imbalance
suggests that, despite effective feature reduction, sensitivity
in detecting dyslexia remains limited. Notably, Random
Forest achieved the highest precision of 78.13%, but its
recall was significantly lower, impacting overall detection
performance.

Random Forest along with XGBoost demonstrated
superior performance than other classifiers and E-CAE in all
datasets because of both models’ exceptional capabilities
to process complex high-dimensional data sets. However,
logistic regression demonstrated a strong balance of
performance and interpretability, especially for the dyslexia
dataset. These results emphasize the importance of aligning
feature selection methods with classifier characteristics to
maximize predictive accuracy and model robustness across
varying datasets.

Conclusion

The study introduced the E-CAE method, which effectively
addressed the challenges of high-dimensional medical
datasets through robust feature selection. The proposed
method integrated multiple correlation metrics to evaluate
feature relevance comprehensively. This multi-perspective
evaluation improved the selection of informative attributes,
contributing to better classification performance across
various datasets. The experimental results showed that
E-CAE brought substantial performance improvements to
various classification techniques. The NB classifier showed its

optimal performance on the Alzheimer/Darwin dataset with
86.79% accuracy which exceeded standard methods. For the
Parkinson'’s dataset, the RF classifier obtained an accuracy
of 88.66% and a high F1 score of 92.22%, demonstrating
its robustness in handling complex and high-dimensional
data. Similarly, in the dyslexia dataset, logistic regression
and XGBoost achieved the highest accuracies of 90.86
and 90.77%, respectively. Despite these promising results,
the recall scores for dyslexia classification remained low,
indicating difficulty in identifying all positive cases. The
study highlighted the adaptability of the E-CAE method
across diverse datasets and classifiers. Ensemble classifiers
like RF and gradient boosting models such as XGBoost
consistently delivered superior results, emphasizing their
ability to exploit the informative features selected by
E-CAE. However, classifiers like Naive Bayes and logistic
regression provide a balance between performance and
interpretability, which is essential for clinical applications.

One limitation of this work was the computational cost
associated with calculating multiple correlation metrics,
especially for large datasets with thousands of features.
Additionally, the E-CAE method, while effective in feature
reduction, did not fully resolve the recallimbalance observed
in certain datasets, such as dyslexia. This limitation suggests
the need for further optimization to balance precision and
recall effectively.
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