RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.16Keywords:
Internet of things, Wireless sensor network, Recurrent neural network, Random forest, Support vector machine, DDOS attack.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Distributed Denial of Service (DDoS) attacks have significantly impacted network performance and stability in Internet of Things (IoT) Wireless Sensor Networks (WSNs) that utilize the Routing Protocol for Low-Power and Lossy Networks (RPL). These attacks cause severe network degradation or failure by flooding network nodes with malicious traffic, which interferes with communication. This study presents an ensemble of machine-learning techniques to detect DDoS attacks in RPL-based IoT-WSN systems, including an RNN-biased Random Forest (RF) and Support Vector Machine (SVM) classifier. The Recurrent Neural Network (RNN) is used to identify attack sequences by capturing temporal patterns in network data. A Random Forest classifier integrates these temporal features and employs many decision trees to improve detection accuracy. An SVM is used to greatly enhance the detecting process. It differentiates between attack and legitimate traffic using robust decision boundaries. The ensemble model improves overall performance in detecting DDoS attacks with greater accuracy, fewer false positives, and improved flexibility in changing attack plans by utilizing the advantages of each technique. Despite the resource limitations present in IoT-WSN environments, experimental results show that this ensemble technique is effective in real-time detection. This approach offers an effective defense against DDoS attacks for Internet of Things networks, guaranteeing dependable communication in networks with limited power and resources.Abstract
How to Cite
Downloads
Similar Articles
- Sreenath M.V. Reddy, D. Annapurna, Anand Narasimhamurthy, Influence node analysis based on neighborhood influence vote rank method in social network , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Infine Sinduja, P. Joesph Charles, A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Karuppiah, Asha Sundaram, Felling of trees – The judicial trends , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper

