Influence node analysis based on neighborhood influence vote rank method in social network
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.69Keywords:
Social Networks, Vote ScoreDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Social Networks are used for various purposes like advertising, product launches, sentiment analysis, opinion mining, and event detection etc. Terrorist targets social network users to spread the terrorism. Influence analysis is used in social networks to find the influence of users and the impact of the messages, mainly for advertising. In this research, the Neighborhood Influence – Vote Rank (NI-VR) method is proposed to analyze the terrorism and social network datasets temporally to find the influence node in Social networks. The Global Terrorism Dataset (GTD) was used to analyze the terrorism activity and temporal analysis on Social Network data to find the influence node. The Neighborhood node influence is measured and considered in the Social Network data to effectively find the influence node. The nodes’ vote score and vote ability were measured to rank the nodes based on influence. The neighborhood influence is measured to update the vote score and vote ability based on influence value. The neighborhood influence method is applied to rank the node has the advantage of analyzing the probability of affected nodes and recover nodes that help to effectively find the influence nodes. The outcomes illustrate that the proposed NI-VR achieved a maximum spread influence of 843 and the existing Greedy method has a higher spread influence of 840 in influence node analysis.Abstract
How to Cite
Downloads
Similar Articles
- Vibhu Tripathi, Saifur Farooqi, Social media usage: implications for empathy, passive aggressive behavior, and impulsiveness , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Urmi Chakravorty, Social media’s detrimental outcomes on personal relationships , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Neha Verma, Beyond likes & clicks: Empowering role of social media marketing in value creation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kunal Lanjekar, Prashant Kalshetti, Joe C. Lopez, Role of social media in lead generation , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pratik Ghosh, Sriram M, A systematic review of social media communication with respect to fashion brands , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- K. S. Deepika, Ajay Massand, Influence of Social Media Marketing on Purchase Intention of Gen Z , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Roop Kanwal, Children’s literature as a tool for social change: Teaching values and social awareness , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.