
Abstract
Distributed denial of service (DDoS) attacks have significantly impacted network performance and stability in the internet of things 
(IoT) wireless sensor networks (WSNs) that utilize the routing protocol for low-power and lossy networks (RPL). These attacks cause 
severe network degradation or failure by flooding network nodes with malicious traffic, which interferes with communication. This 
study presents an ensemble of machine-learning techniques to detect DDoS attacks in RPL-based IoT-WSN systems, including an RNN-
biased random forest (RF) and support vector machine (SVM) classifier. The recurrent neural network (RNN) is used to identify attack 
sequences by capturing temporal patterns in network data. A Random Forest classifier integrates these temporal features and employs 
many decision trees to improve detection accuracy. An SVM is used to greatly enhance the detecting process. It differentiates between 
attack and legitimate traffic using robust decision boundaries. The ensemble model improves overall performance in detecting DDoS 
attacks with greater accuracy, fewer false positives, and improved flexibility in changing attack plans by utilizing the advantages of each 
technique. Despite the resource limitations present in IoT-WSN environments, experimental results show that this ensemble technique 
is effective in real-time detection. This approach offers an effective defense against DDoS attacks for Internet of Things networks, 
guaranteeing dependable communication in networks with limited power and resources.
Keywords: Internet of things, Wireless sensor network, Recurrent neural network, Random forest, Support vector machine, DDOS attack.
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Introduction
Wireless sensor networks (WSNs) that make use of the 
routing protocol for low-power and lossy networks (RPL) 
have become widely used as a result of the internet of things’ 
(IoT) evolution. Applications like industrial automation, 
environmental monitoring, and smart cities depend on 
these networks. However, because of their intrinsic resource 
limitations, they are vulnerable to a number of security 
risks, most notably distributed denial of service (DDoS) 
attacks. Adversaries use these attacks to overload network 
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nodes with traffic, which significantly reduces network 
performance and, in extreme situations, causes network 
failure.

Recent studies have underscored the severity of 
DDoS attacks on IoT networks. For instance, (Xie et al., 
2023) highlighted that DDoS attacks are among the most 
dangerous threats to IoT networks, capable of denying 
legitimate services by flooding the network with malicious 
traffic. The study demonstrated that machine learning 
models, particularly random forests, achieved high accuracy 
(99.32%) in detecting various types of DDoS traffic.

To enhance the resilience of RPL-based IoT-WSNs against 
DDoS attacks, integrating machine learning techniques 
has emerged as a promising approach. Recurrent neural 
networks (RNNs) are adept at capturing temporal patterns 
in network traffic, making them suitable for identifying 
attack sequences. Random forest classifiers, known for 
their robustness and high accuracy, can effectively handle 
the temporal features extracted by RNNs. Support vector 
machines (SVMs) further contribute by establishing clear 
decision boundaries between legitimate and malicious 
traffic. The ensemble of these techniques leverages their 
individual strengths, resulting in improved detection 
accuracy, reduced false positives, and adaptability to 
evolving attack strategies.​
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This study builds upon existing research by presenting an 
ensemble model that combines RNNs, random forests, 
and SVMs to detect DDoS attacks in RPL-based IoT-WSN 
systems. The proposed approach aims to ensure reliable 
communication in networks with limited power and 
resources, thereby enhancing the overall security and 
stability of IoT deployments.

Related Works
An intrusion detection system (IDS) based on conditional 
tabular generative adversarial networks (CTGAN) for 
detecting DDoS and DoS attacks in IoT networks (Alabsi 
et al., 2023). The CTGAN is used to generate synthetic 
network traffic resembling legitimate data, which enhances 
the training of machine learning and deep learning 
classifiers. The proposed IDS, tested on the Bot-IoT dataset, 
showed improved accuracy, precision, recall, and F1 
score in detecting malicious traffic. The authors suggest 
refining CTGAN models, integrating additional anomaly 
detection techniques, and testing the IDS on real-time IoT 
environments to enhance its robustness.

This research presents a novel intrusion detection model 
integrating CNN with reciprocal points learning (RPL), an 
open-set recognition (OSR) technique (Shieh et al., 2024). 
The model aims to detect both known and unknown 
DDoS attacks by effectively learning attack patterns and 
distinguishing malicious traffic. The CNN-RPL model 
achieved high accuracy in detecting known attacks using 
the CICIDS2017 dataset and the highest accuracy against 
unknown attacks in the CICDDoS2019 dataset. The model’s 
performance might degrade with highly sophisticated 
adversarial attacks that can evade OSR-based detection. 
Additionally, its reliance on deep learning increases 
computational demands. The study recommends enhancing 
the model’s adaptability to evolving DDoS attack patterns 
and integrating incremental learning techniques to improve 
real-time attack detection.

This work introduces a hybrid deep learning-based 
IDS for RPL-based IoT networks. The approach combines 
supervised deep artificial neural networks (DANN) and semi-
supervised deep autoencoders (DAE) to classify known and 
unknown attacks (Al Sawafi et al., 2023). Additionally, the 
study introduces a new dataset, IoTR-DS, which simulates 
three RPL-specific attacks (DIS, Rank, and Wormhole). The 
IoTR-DS dataset contributed to better attack detection in 
RPL-based IoT environments. Future research could expand 
the dataset with additional IoT attack scenarios, improve 
model efficiency for real-time detection, and explore 
federated learning for distributed attack detection.

The Proposed work presents a discrete event system 
(DES)-based IDS to detect rank and version number attacks 
in RPL-based IoT networks (Ray et al., 2023). The model 
utilizes an active probing technique that differentiates 
normal and malicious network behavior, ensuring minimal 

computational overhead. The centralized nature of the IDS 
may introduce single points of failure, and the approach 
might not be effective against more sophisticated attacks 
like Sybil or botnet-based DDoS. The authors propose 
extending the framework to support decentralized IDS 
models, integrating more attack types, and improving 
energy efficiency further by optimizing event monitoring 
techniques.

This paper provides a comprehensive review and 
taxonomy of attack detection approaches targeting the 
RPL protocol in IoT networks. It categorizes various attacks, 
including resource-based attacks like Hello flooding and 
version number attacks (VNA), and discusses existing 
detection and mitigation strategies (Alfriehat N et al., 2024). 
The authors recommend developing more robust detection 
mechanisms that can handle indirect and sophisticated 
attacks, ensuring the reliability of RPL-based IoT networks.​

This paper explores the use of dimensionality reduction 
techniques to enhance the timely detection of DDoS attacks 
in IoT networks. By reducing the feature space, (Kumari et al., 
2024) the proposed method aims to improve the efficiency 
and accuracy of machine learning models in identifying 
malicious activities. The study highlights that selecting 
appropriate features for reduction is critical and may vary 
across different IoT environments, potentially affecting the 
model’s performance. The authors suggest investigating 
adaptive feature selection methods to enhance the 
generalizability of the detection system across diverse IoT 
scenarios.

In the study, routing techniques for WSNs utilizing 
blockchain and reinforcement learning are reviewed. Secure 
routing protocols that take trust values and hostile nodes 
into account are covered. (Rukmani et.al.,2024) Energy-
efficient routing strategies and their security implications are 
examined in the paper. Numerous strategies for detecting 
rogue nodes and enhancing routing effectiveness are 
investigated. 

The study focuses on identifying knee arthritis. 
A better classif ication method based on SVM is 
suggested. (Hemamalini et.al.,2024) The effectiveness of 
hyperparameter tuning is increased using Cuckoo search 
optimization. The model’s performance is improved by 
reducing classification errors. Significant improvements 
in classification performance are demonstrated by the 
experimental results. F1 score, recall, accuracy, and precision 
are all improved by the method

The researchers developed an anomaly-based intrusion 
detection system (IDS) that combines Convolutional Neural 
Networks (CNN) with a Multi-Objective Enhanced Capuchin 
Search Algorithm to detect intrusions in IoT networks 
(Asgharzadeh et al., 2023). The system aims to identify 
anomalies in network traffic that may indicate potential 
attacks. The proposed IDS achieved high detection rates 
and demonstrated robustness in identifying various types 
of intrusions within IoT environments.​
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This paper proposes a trust-based anomaly detection 
scheme that utilizes a hybrid deep learning model, 
combining sequence prediction and deep learning 
techniques, to mitigate routing attacks in IoT networks. 
The model focuses on detecting anomalies in routing 
behaviors to identify potential attacks (Ahmadi K et al., 
2024). The scheme effectively detected various routing 
attacks, including black-hole attacks, DIS flooding attacks, 
version number attacks, and decreased rank attacks, thereby 
enhancing the security of IoT networks (Table 1).

Background

Fuzzy Logic
Fuzzy logic is an intelligent decision-making approach that 
effectively handles uncertainty and imprecise data, making 
it particularly useful in intrusion detection for IoT networks. 
Unlike traditional binary classification techniques, fuzzy 
logic enables systems to interpret ambiguous inputs and 
make approximate reasoning decisions. In the context of 
DDoS attack detection, fuzzy logic evaluates key network 
parameters such as traffic volume, packet rate, latency, and 
error rate to determine abnormal patterns. Studies such 
as (Javaheri D et al., 2023) have shown that fuzzy logic-
based anomaly detection outperforms rigid threshold-
based systems by reducing false positives and enhancing 
detection accuracy. By incorporating fuzzy membership 
functions, the system can dynamically adjust to varying 
traffic conditions, making it more adaptable to evolving 
cyber threats. However, fuzzy logic alone may struggle 
with complex, high-dimensional data, which necessitates 

hybrid approaches integrating machine learning models 
for improved performance.

Long Short-Term Memory
Long short-term memory (LSTM) is a specialized type 
of recurrent neural network (RNN) designed to capture 
long-term dependencies in sequential data. In IoT-WSN 
environments, LSTMs have proven highly effective in 
detecting DDoS attacks by analyzing temporal patterns in 
network traffic (Suleiman et al., 2023). Unlike traditional neural 
networks, LSTMs use memory cells to retain critical historical 
information while mitigating issues like vanishing gradients. 
This capability allows LSTMs to identify sophisticated attack 
patterns that span multiple time steps. Several studies have 
highlighted the advantages of LSTMs in network security, 
demonstrating their ability to differentiate between normal 
and malicious traffic with high accuracy (Gopali S et al., 2024). 
However, the computational complexity of LSTM models can 
be a challenge in resource-constrained IoT environments. To 
address this, optimized variants like attention-based LSTMs 
and hybrid models combining LSTMs with feature selection 
techniques have been explored to improve efficiency and 
reduce processing overhead.

Multi-Dimension Random Forest (MDRF)
Multi-dimension random forest (MDRF) is an advanced 
ensemble learning approach that extends traditional 
random forest models by incorporating feature grouping 
and dimensionality reduction. In our previous work, we 
proposed MDRF to enhance DDoS attack detection by 
segmenting input features into multiple dimensions, 

Table 1: Existing methods table

Author & Year Findings Limitations Future work

Alabsi et al. (2023) Proposed a Conditional Tabular Generative 
Adversarial Network (CTGAN)-based IDS to detect 
DDoS/DoS attacks in IoT. Demonstrated improved 
classification performance using synthetic data.

Heavy reliance on synthetic 
data quality; may not 
generalize well to real-world 
environments.

Improve CTGAN models 
and integrate additional 
anomaly detection 
methods.

Shieh et al. (2024) Developed CNN-RPL (Convolutional Neural 
Network with Reciprocal Points Learning) to 
detect known and unknown DDoS attacks, 
achieving 99.93% accuracy on known attacks and 
98.51% on unknown ones

Vulnerable to adversarial 
attacks; deep learning models 
require high computational 
resources

Enhance adaptability 
to evolving DDoS 
attacks and integrate 
incremental learning

Ray et al. (2023) Introduced a Discrete Event System (DES)-based 
IDS with active probing to detect rank and version 
number attacks in RPL networks. Achieved over 
99% detection accuracy.

Centralized IDS can introduce 
single points of failure; may 
not be effective against 
sophisticated attack variations

Develop decentralized 
IDS models and 
optimize energy 
efficiency

Sharma et al. (2024) Provided a taxonomy of RPL attacks and reviewed 
existing detection approaches. Identified gaps in 
current security measures

Existing detection methods 
struggle with indirect attacks 
and network congestion 
manipulation

Develop robust 
mechanisms to 
address indirect and 
sophisticated attack 
strategies.

Mansour et al. (2023) Proposed a trust-based anomaly detection 
scheme using hybrid deep learning models to 
mitigate IoT routing attacks. Successfully detected 
black-hole, DIS flooding, and rank attacks.

Dependence on trust metrics 
introduces delays in detection; 
performance can be affected 
by dynamic network changes

Explore adaptive 
trust-based IDS 
models with real-time 
responsiveness
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thereby improving classification accuracy while reducing 
computational cost. This method groups similar features 
together, allowing the model to analyze complex attack 
patterns more effectively. Compared to conventional 
random forests, MDRF demonstrated superior performance 
in detecting RPL-based IoT attacks, achieving higher true 
positive rates and fewer false alarms. However, one limitation 
of MDRF is its reliance on predefined feature groups, 
which may not generalize well to unseen attack patterns. 
Future improvements include integrating adaptive feature 
selection methods to further enhance model flexibility and 
robustness in dynamic IoT environments.

Custom-made Support Vector Machine (CSVM)
Custom-made support vector machine (CSVM) is an 
optimized version of the traditional SVM model, designed 
specifically for IoT-WSN intrusion detection. Unlike 
conventional SVMs, which rely on predefined kernel 
functions, CSVM dynamically selects the most suitable 
hyperplane by leveraging domain-specif ic feature 
selection techniques. This customization allows CSVM to 
effectively classify high-dimensional network traffic data, 
distinguishing between legitimate and malicious packets 
with higher precision. In our implementation, CSVM 
integrates feature selection outputs from MDRF to enhance 
its classification capabilities. Experimental results indicate 
that CSVM improves detection rates while reducing false 
positives compared to standard SVM approaches. However, 
the model’s effectiveness is influenced by the quality of 
selected features, highlighting the need for continuous 
feature optimization. Future research aims to integrate 
deep learning techniques with CSVM to further enhance its 
adaptability to evolving DDoS attack patterns.

Proposed Method
Proposed “RNN biased random forest and SVM ensemble 
for RPL DDoS in IoT-WSN Environment” method consists of 
three innovative functional modules namely Fuzzy DDoS 
Attention Model, FDAM infused Long Short-Term Memory 
(FLSTM), and FLSTM Multi-dimensional Random Forest 
Customized SVM Composite. Construction methodologies, 
functionalities, and the purposes of these modules are 
presented in this section in a transparent way in this section. 

Fuzzy DDoS Attention Model (FDAM)
FDAM module is used to perform a preliminary evaluation 
of the key parameters such as traffic volume, packet rate, 
network latency, error rate, and energy consumption. FDAM 
method analyzes the rate of change in the standard flow 
of these parameters and sets an attention flag α  as the 
output. If a notable change in the flow is detected, FDAM 
sets 1α = , otherwise sets 0.α =

Let , ,t t t tV P L E  and tJ  be the traffic volume, packet 
ratio, network latency, error rate, and energy consumption, 

respectively at timestamp t . Let { }1 2 3 4 5, , , ,K κ κ κ κ κ=  be 
the set of flow variations of the pivotal parameters traffic 
volume, packet rate, network latency, error rate, and energy 
consumption between timestamps t  and 1t − . 

In FDAM, a privileged equation is contrived to compute 
the variations of the input parameters. Let tX  be the value 
of an input parameter at timestamp t , 1tX −  be the input 
value at timestamp 1,  mint X−  be the minimum possible 
value of the parameter, and maxX  be the maximum possible 
value of the parameter, then the variation xκ  is computed 
by the following equation.

2
1

100 10x t t
max min

X X
X X

κ −
−

 
= × − × − 

	 Equation (1)

where X  can be substituted by any input parameter 
such as , ,t t t tV P L E  and tJ  to compute corresponding xκ .

The fuzzy anomaly average avgK  for the variations 
of the perceived input parameters are computed by the 
following formula.

1 1

1 n

avg iK
n

κ
=

= ∑ 			   Equation (2)

where n  refers to the number of input parameters 
perceived which is equal to 5 for the current FDAM version.

The attention flag α  is determined by Equation 3

( )i
11 i 1 5ê 3 / 4
2

0  

avgifK if

otherwise
α

 ≥ ∨∀ = → ≥= 


 		 Equation (3)

A flowchart for FDAM functionality is illustrated in 
Figure 1.

Through this way, the proposed FDAM sets the attention 
flag α  to 1 if the anomaly average is above 50% if a single 
parameter anomaly variation is greater than or equal to 
75%. This Attention flag is further used by the chronological 
modules.

FDAM-infused Long Short-Term Memory (FLSTM)
A standard LSTM model is optimized to incorporate the 
attention flag which is obtained from the FDAM module. 
Regula equations for the input gate, candidate cell state, 
cell state update, hidden state, output gate and forget gate 
are customized for FLSTM as follows.
Input Gate:

[ ]( )1,t i t t ii w h x bσ α−= ⋅ + ⋅ . 		  Equation (4)

Candidate Cell State:
[ ]( )1tanh ,t c t t cC w h x bα−= ⋅ + ⋅ 	 Equation (5)
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Cell State Update

t 1Ct t t tC f i C−= + 



 		  Equation (6)

Hidden State

tanh
2t t th o C α =  

 
  		  Equation (7)

Output Gate

[ ]( )1,t o t t oo w h x bσ α−= ⋅ + ⋅ 		  Equation (8)

Forget Gate

[ ]( )1,t f t t ff w h x bσ α−= ⋅ + ⋅ 		  Equation (9)

FLSTM is contrived in a way that includes an additional 
control mechanism to selectively enable or disable the 
biases based on the attention flag α  in its computations. 
Biases in neural networks are typically used to adjust the 
outputs of the gates and improve the flexibility of the model 
in learning patterns. In FLSTM, the binary type attention 
flag acts as a switch to determine whether these biases are 
applied in each gate. When the attention flag is active, the 
biases contribute to the calculations, allowing the FLSTM 
to leverage additional learnable parameters for better 
performance. Conversely, when the flag is inactive, the 
biases are excluded, simplifying the model and potentially 
reducing overfitting or computational overhead. This 
modification provides dynamic control over the LSTM 
network’s complexity, making FLSTM as adaptable for 
scenarios that require fine-tuning of computational or model 
capacity. FLSTM generates an anomaly prediction Lω  based 
on the input parameters and the attention flag provided by 
FDAM. The output Lω  is used in the subsequent module 
FLMRFCS to conclude the final decision about whether the 

arrived network transaction is a DDoS attack or not. 
FLSTMs offer several advantages that make them highly 

versatile and efficient for sequence modeling tasks. By 
incorporating an attention flag mechanism, they provide 
dynamic control over model complexity, allowing biases 
to be selectively enabled or disabled. This flexibility 
enhances the model’s ability to learn complex patterns 
when needed, while also simplifying it to reduce the risk of 
overfitting in scenarios with limited data or less complexity. 
The adaptability to varying resource constraints makes 
FLSTM particularly useful for deployment in resource-
limited environments, such as IoT and wireless sensor 
nodes. In addition, the ability to fine-tune the inclusion of 
biases during training or deployment adds another layer of 
flexibility, enabling real-time adjustments to meet evolving 
requirements. This dynamic control also aids in improving 
interpretability, as it allows researchers to study the impact 
of biases on gate functions and overall performance. These 
features make FLSTM a powerful and adaptable tool for 
applications ranging from natural language processing 
to sensor data analysis. FLSTM architecture is provided in 
Figure 2.

FLSTM Multi-dimensional Random Forest Customized 
SVM Composite (FLMRFCS)
This module involves determining the number of features 
in a typical network transaction, which depends on factors 
such as the communication protocol, routing protocol, 
network architecture, and the hardware components 
involved. The features are organized into a set, and feature 
groups are created in a separate set. Unlike a standard 
random forest model, the modified decision random forest 
(MDRF) approach divides all input features into separate 
groups to improve performance metrics like true positives, 
true negatives, and accuracy. Each group contains a specific 
number of features, and if a group has fewer features than 
required, padding is applied to ensure that all groups are 
filled appropriately. This approach helps in better organizing 
the features and optimizing the model’s performance during 
the classification process.

Figure 1: FDAM flowchart

Figure 2: FLSTM architecture
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The modified decision random forest - dimensionality 
reduction (MDRF-DR) algorithm enhances the performance of 
the standard random forest model by focusing on improving 
feature relevance and reducing the dimensionality of the 
input data. It does so by evaluating each feature in terms of 
its contribution to the classification process. Specifically, the 
algorithm identifies features that are deemed “beneficial,” 
meaning those that significantly contribute to improving 
model accuracy, true positives, and true negatives.

Features that contribute less than 50% to the model’s 
effectiveness are considered to be of lower value, and 
these are eliminated from the feature set. This process of 
eliminating less beneficial features helps in reducing the 
computational complexity of the model, thus making it 
more efficient while maintaining or even improving its 
predictive power. The remaining set of beneficial features, 
referred to as the beneficial multi-dimension random forest 
set is then passed to the next functional module for further 
processing.

This dimensionality reduction not only simplifies the 
model but also ensures that only the most relevant features 
are used in subsequent decision-making, helping the 
algorithm focus on the data that has the most predictive 
power. By removing less useful features, the MDRF-DR 
algorithm can achieve better generalization, faster training 
times, and potentially higher accuracy in detecting patterns, 
particularly in complex datasets like IoT and WSN data. 

The classification support vector machine (CSVM) 
model employs supervised learning, although no labeled 
dataset is directly used. Instead, the Wireshark-assisted 
hypervisor output provides DDoS attack labels for each 
network transaction occurring within a specific internet of 
things - wireless sensor networks (IoT-WSN) environment. 
The feature selection process from the modified decision 
random forest (MDRF) model is inherited by the CSVM, 
with the assumption that the beneficial random forests 
are more likely to contain the most impactful features 
from the input data. The process begins by defining an 
empty feature set that will be used by the CSVM module. 
Selected features from the MDRF model are added to this 
set through a predefined method. Once the features are 
selected, the number of features chosen is determined, 
and a hyperplane with one less dimension than the number 
of selected features is initialized for the CSVM. The CSVM 
then uses a hyperplane selection algorithm to evaluate all 
possible combinations of feature pairs (X-Y axis features). 
This selection process aims to enhance the model’s ability 
to classify correctly, specifically improving performance 
metrics such as the true positive rate (TPR) and reducing the 
false positive rate (FPR). By selecting the optimal features 
and adjusting the hyperplane accordingly, the CSVM model 
strives to maximize classification accuracy in detecting 
DDoS attacks.

FLMRFCS uses the output Rω  fetched from the MDRF 
module, and the output Sω  from CSVM module, along with 
FSLTM output Lω  to determine the DDoS attack status as 
in the following algorithm.
Algorithm: FLMRFCS
Input: , ,R Sω ω  and Lω
Output: DDoS status
Step 1: Let Tω  be the central tendency coefficient
Step 2: Let Qω  be the normalized output quotient
Step 3: Read Rω  from MDRF
Step 4: Read Sω  from CSVM
Step 5: Read Lω  from FLSTM
Step 6: Compute 

2
S R

T R
ω ωω ω − = +  
 

Step 7: Compute 
2

T L
Q L

ω ωω ω − = +  
 

Step 8: 
1   
2

  

QDDoS if
Output

Not DDos otherwise

ω >= 


Step 9: return Output
Step 10: Repeat process from Step 3 until network halt

A comprehensive flow diagram of proposed RRFSE 
method is illustrated in Figure 3. 

Experimental Setup
The proposed RRFSE method is implemented on a computer 
equipped with an Intel i7 processor, 16 GB of memory, 
and 1TB of storage. To obtain real-time IoT-WSN data and 
perform DDoS detection, a server leased from i2k2.com is 
used. This server is integrated with the industrial-standard 
Wireshark network tracing tool to assess the performance 
of various methods discussed in the study. A custom user 
interface (UI) is developed to upload programming scripts 
to the server, allowing interaction with both the server 
and Wireshark to retrieve performance metrics. The UI 
is built using Visual Studio IDE. The network scripts and 
communication with the Wireshark software are developed 
in C++ 20.0. As the entire system relies on real-time network 
data, pre-existing datasets are not used. During the training 
phase, performance is recorded every 7% increment of data 
until 70%, while in the testing phase, performance metrics 
are logged for every 3% of data until 30%, adhering to a 
70:30 training-to-testing ratio throughout the experiments.

Results and Discussion
The results of the proposed RRFSE method approach are 
displayed in the tables below alongside the outcomes 

Figure 3: RRFSE workflow diagram 
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from other models that are currently in use, which include 
conditional tabular generative (CTG), hybrid deep learning 
intrusion detection (HDLID), novel energy-efficient scheme 
for discrete event modeling (NEESDEM), and unknown ddos 
reciprocal points learning (UDRPL). Every evolution metric, 
including sensitivity, specificity, accuracy, precision, F-score, 
and G-mean, exhibits a notable improvement. 

As Table 2 shows, the suggested RRFSE approach 
achieved 98.92% accuracy when compared to current 
techniques. Table 3 demonstrates that the RRFSE method 
performed better than the precision by 98.81%. RRFSE 
receives a 99.02% in the sensitivity (Table 4). The specificity 
attained in Table 5 is 98.81%, but the F score metrics in Table 6 
 reach 98.92%. In the end, Table 7 displays the G-mean value 
of 98.99%.

Compared with various approaches presently in usage, 
including the conditional tabular generative (CTG), hybrid 
deep learning intrusion detection (HDLID), novel energy-
efficient scheme for discrete event modelling (NEESDEM), 
and unknown DDoS reciprocal points learning (UDRPL). 
Figure 4 indicates the visual appearance of the outcomes 

Table 2: Accuracy (%)

Data (%) UDRPL HDLID NEESDEM CTGA RRFSE

3 96.99 95.75 97.91 98.17 98.92

6 96.95 95.64 97.85 98.17 98.97

9 96.99 95.71 97.88 98.14 99.04

12 97.03 95.64 97.89 98.19 98.99

15 97.04 95.67 97.95 98.19 99.03

18 96.99 95.71 97.92 98.14 98.96

21 97.03 95.71 97.92 98.12 98.96

24 96.92 95.71 97.89 98.14 99.01

27 97.03 95.67 97.91 98.13 98.99

30 96.97 95.71 97.93 98.10 98.92

Table 3: Precision(%)

Data (%) UDRPL HDLID NEESDEM CTGA RRFSE

3 98.05 96.05 97.04 97.82 98.81

6 97.94 95.97 96.91 97.76 98.86

9 97.91 96.08 96.99 97.76 98.89

12 98.02 95.94 97.04 97.84 98.89

15 98.07 95.94 97.04 97.79 98.95

18 97.91 96.02 96.94 97.71 98.89

21 98.05 95.94 96.96 97.79 98.84

24 97.94 95.97 97.02 97.82 98.89

27 97.99 95.99 96.94 97.74 98.92

30 97.91 95.99 97.04 97.71 98.81

Table 4: Sensitivity (%)

Data (%) UDRPL HDLID NEESDEM CTGA RRFSE

3 96.01 95.47 98.75 98.52 99.02

6 96.04 95.34 98.77 98.57 99.08

9 96.14 95.37 98.74 98.51 99.19

12 96.12 95.37 98.72 98.52 99.08

15 96.09 95.42 98.83 98.57 99.11

18 96.14 95.42 98.88 98.57 99.02

21 96.09 95.49 98.85 98.43 99.08

24 95.99 95.47 98.75 98.46 99.13

27 96.14 95.37 98.85 98.51 99.05

30 96.11 95.45 98.80 98.49 99.02

Table 5: Specificity (%)

Data (%) UDRPL HDLID NEESDEM CTGA RRFSE

3 98.00 96.02 97.09 97.83 98.81

6 97.90 95.94 96.97 97.78 98.87

9 97.87 96.05 97.04 97.78 98.90

12 97.98 95.92 97.09 97.86 98.89

15 98.03 95.92 97.10 97.81 98.95

18 97.87 96.00 96.99 97.73 98.89

21 98.01 95.92 97.02 97.80 98.84

24 97.90 95.95 97.07 97.83 98.89

27 97.95 95.97 96.99 97.75 98.92

30 97.87 95.97 97.10 97.73 98.81

Table 6: FScore (%)

Data (%) UDRPL HDLID NEESDEM CTGA RRFSE

3 97.02 95.76 97.89 98.17 98.92

6 96.98 95.65 97.83 98.16 98.97

9 97.02 95.72 97.86 98.14 99.04

12 97.06 95.65 97.87 98.18 98.98

15 97.07 95.68 97.93 98.18 99.03

18 97.02 95.72 97.90 98.14 98.96

21 97.06 95.72 97.90 98.11 98.96

24 96.95 95.72 97.87 98.14 99.01

27 97.06 95.68 97.88 98.12 98.99

30 97.00 95.72 97.91 98.10 98.92

of the proposed RRFSE method approach. It is clear from 
the preceding graph that the RRFSE methodology performs 
better than the existing methods in every evaluation metric. 
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Table 7: GMean (%)

Data 
(%) UDRPL HDLID NEESDEM CTGA RRFSE

3 97.00 95.75 97.92 98.17 98.92

6 96.96 95.64 97.86 98.17 98.97

9 97.00 95.71 97.89 98.15 99.04

12 97.04 95.64 97.90 98.19 98.99

15 97.06 95.67 97.96 98.19 99.03

18 97.00 95.71 97.93 98.15 98.96

21 97.04 95.71 97.93 98.12 98.96

24 96.94 95.71 97.90 98.15 99.01

27 97.04 95.67 97.92 98.13 98.99

30 96.99 95.71 97.94 98.11 98.92

Figure 4: Graphical representation of RRFSE Method

Conclusion
The suggested ensemble approach for identifying DDoS 
attacks in RPL-based IoT WSNs that combines RNN, BRF, and 
SVM provides a practical way to deal with the increasing 
threat of DDoS in IoT contexts. Each of these models 
contributes unique benefits to raise the overall reliability, 
resilience, and accuracy of detection. Time-dependent 
dependencies and trends in network traffic are captured by 
RNN’s effective sequential data analysis, which is crucial for 

identifying complex DDoS attacks that change over time. 
The model’s robustness is enhanced by BRF, which uses 
several decision trees that are capable of handling both 
small and large datasets. This ensures that there are few false 
positives despite identifying complex attack patterns.SVM 
helps by classifying data according to a margin of separation, 
which improves precision by assisting in the identification 
of harmful or unusual network behaviors in features with 
high dimensions.
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