RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.16Keywords:
Internet of things, Wireless sensor network, Recurrent neural network, Random forest, Support vector machine, DDOS attack.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Distributed Denial of Service (DDoS) attacks have significantly impacted network performance and stability in Internet of Things (IoT) Wireless Sensor Networks (WSNs) that utilize the Routing Protocol for Low-Power and Lossy Networks (RPL). These attacks cause severe network degradation or failure by flooding network nodes with malicious traffic, which interferes with communication. This study presents an ensemble of machine-learning techniques to detect DDoS attacks in RPL-based IoT-WSN systems, including an RNN-biased Random Forest (RF) and Support Vector Machine (SVM) classifier. The Recurrent Neural Network (RNN) is used to identify attack sequences by capturing temporal patterns in network data. A Random Forest classifier integrates these temporal features and employs many decision trees to improve detection accuracy. An SVM is used to greatly enhance the detecting process. It differentiates between attack and legitimate traffic using robust decision boundaries. The ensemble model improves overall performance in detecting DDoS attacks with greater accuracy, fewer false positives, and improved flexibility in changing attack plans by utilizing the advantages of each technique. Despite the resource limitations present in IoT-WSN environments, experimental results show that this ensemble technique is effective in real-time detection. This approach offers an effective defense against DDoS attacks for Internet of Things networks, guaranteeing dependable communication in networks with limited power and resources.Abstract
How to Cite
Downloads
Similar Articles
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Prabu Gopal, M. Jeyaseelan, Familial support of rural elderly in indian family system: A sociological analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper

