EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.17Keywords:
Sentiment analysis, Natural language processing, Multilingual dataset, Imbalance classification, SMOTE.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Natural language processing (NLP) tasks, such as multilingual sentiment analysis, are inherently challenging, especially when dealing with unbalanced data. A dataset is considered imbalanced when one class significantly dominates the others, creating an unbalanced distribution. In many domains, the minority class holds crucial information, presenting unique challenges. This research addresses these challenges using an ensemble-based oversampling technique, EMSMOTE (Ensemble Multiclass Synthetic Minority Oversampling Technique). By leveraging SMOTE, EMSMOTE generates multiple synthetic datasets to train various classifiers. The proposed model, when combined with an ensemble random forest classifier, attained an impressive accuracy of 90.73%. This ensemble approach not only mitigates the effects of noisy synthetic samples introduced by SMOTE but also showcases significant enhancement in the overall performance in tackling class imbalances.Abstract
How to Cite
Downloads
Similar Articles
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Isreal Zewide, Tamiru Boni, Wondwosen Wondimu, Kibinesh Adimasu, Yield and economics of bean (Phaseolus vulgaris L.) as affected by blended NPS fertilizer rates and inter row spacing at maenitgoldia, Southwest Ethiopia , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Birhanu T Sisay, Jadu K. Agerchu, Gizachew W. Nuraga, Effects of bended NPSB fertilizer rates and varieties on growth and yield of garlic (Allium sativum L.) in Gummer district, Central Ethiopia , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vibhu Tripathi, Saifur Farooqi, Social media usage: implications for empathy, passive aggressive behavior, and impulsiveness , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sonal R. Vasant, Synthesis and characterization of pure and magnesium ion doped CPPD nanoparticles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper