EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.17Keywords:
Sentiment analysis, Natural language processing, Multilingual dataset, Imbalance classification, SMOTE.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Natural language processing (NLP) tasks, such as multilingual sentiment analysis, are inherently challenging, especially when dealing with unbalanced data. A dataset is considered imbalanced when one class significantly dominates the others, creating an unbalanced distribution. In many domains, the minority class holds crucial information, presenting unique challenges. This research addresses these challenges using an ensemble-based oversampling technique, EMSMOTE (Ensemble Multiclass Synthetic Minority Oversampling Technique). By leveraging SMOTE, EMSMOTE generates multiple synthetic datasets to train various classifiers. The proposed model, when combined with an ensemble random forest classifier, attained an impressive accuracy of 90.73%. This ensemble approach not only mitigates the effects of noisy synthetic samples introduced by SMOTE but also showcases significant enhancement in the overall performance in tackling class imbalances.Abstract
How to Cite
Downloads
Similar Articles
- Shivani Goel, Rashmi Ashtt, Monali Wankar, Analyzing the impact of crime on quality of life in Old Delhi: A quantitative approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amanda Q. Okronipa, Jones Y. Nyame, Exploring the effect of perceived empathy and social presence on the intention to use AI in higher education , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Tarannum ., Anuja Pandey, Arti Rauthan, An evaluation of the impact of lean management practices on patients’ satisfaction at a small healthcare facility , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

