EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.17Keywords:
Sentiment analysis, Natural language processing, Multilingual dataset, Imbalance classification, SMOTE.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Natural language processing (NLP) tasks, such as multilingual sentiment analysis, are inherently challenging, especially when dealing with unbalanced data. A dataset is considered imbalanced when one class significantly dominates the others, creating an unbalanced distribution. In many domains, the minority class holds crucial information, presenting unique challenges. This research addresses these challenges using an ensemble-based oversampling technique, EMSMOTE (Ensemble Multiclass Synthetic Minority Oversampling Technique). By leveraging SMOTE, EMSMOTE generates multiple synthetic datasets to train various classifiers. The proposed model, when combined with an ensemble random forest classifier, attained an impressive accuracy of 90.73%. This ensemble approach not only mitigates the effects of noisy synthetic samples introduced by SMOTE but also showcases significant enhancement in the overall performance in tackling class imbalances.Abstract
How to Cite
Downloads
Similar Articles
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Roopesh K R, Jyothi Y, Manisha Bihani, Chandini C H, Nishanth D R, Maheshkumar Hondale, Sairashmi Samanta, Karthik G, Anu M, Neuroprotective effect of alcoholic extract of Selaginella bryopteris leaves in experimental models of epilepsy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dushyant Dave, Naresh Vyas, Impact of Textile Effluents on Soil in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Ashwani Pandey, Sanjay Madan, Kumari Sandhiya, Ruchi Sharma, Akansha Raturi, Ashmita Bhatt, Naveen Gaurav, Comparison of Antioxidant, Phytochemical Profiling of Bacopa monnieri (Brahmi) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- RUCHI SHARMA, YOUGESH KUMAR, STATISTICAL ANALYSIS OF MONOGENEAN POPULATIONS INFESTING FRESH WATER FISH CHANNA PUNCTATUS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper