EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.17Keywords:
Sentiment analysis, Natural language processing, Multilingual dataset, Imbalance classification, SMOTE.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Natural language processing (NLP) tasks, such as multilingual sentiment analysis, are inherently challenging, especially when dealing with unbalanced data. A dataset is considered imbalanced when one class significantly dominates the others, creating an unbalanced distribution. In many domains, the minority class holds crucial information, presenting unique challenges. This research addresses these challenges using an ensemble-based oversampling technique, EMSMOTE (Ensemble Multiclass Synthetic Minority Oversampling Technique). By leveraging SMOTE, EMSMOTE generates multiple synthetic datasets to train various classifiers. The proposed model, when combined with an ensemble random forest classifier, attained an impressive accuracy of 90.73%. This ensemble approach not only mitigates the effects of noisy synthetic samples introduced by SMOTE but also showcases significant enhancement in the overall performance in tackling class imbalances.Abstract
How to Cite
Downloads
Similar Articles
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Heikham G. Chanu, Sudha A. Raddi, Anita Dalal, Sangeeta N. Kharde, Shivani Tendulkar, Association between the socio-demographic variables of women admitted for delivery to a Tertiary Care Hospital and their maternal and neonatal outcome - A cross-sectional study , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P. L. Parmar, P. M. George, Study and optimization of process parameters for deformation machining stretching mode , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Neeru Garg, B. R. Jaipal, Food Compositions of the Indian Fox (Vulpes bengalensis) in the Desert Region of Rajasthan, India , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Getasew Mesfin, Isreal Zewide, Abdeta Jembere, Physicochemical Characterization of Vermicompost and its Effect on Acidic Soils in Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rajesh Kumar Sharma, Amrendra Jha, ECOLOGICAL SCREENING OF SHATIYA WETLAND IN RELATION TO AGRICULTURAL PRODUCTIVITY , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- RUCHI SHARMA, YOUGESH KUMAR, STATISTICAL ANALYSIS OF MONOGENEAN POPULATIONS INFESTING FRESH WATER FISH CHANNA PUNCTATUS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper