EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.17Keywords:
Sentiment analysis, Natural language processing, Multilingual dataset, Imbalance classification, SMOTE.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Natural language processing (NLP) tasks, such as multilingual sentiment analysis, are inherently challenging, especially when dealing with unbalanced data. A dataset is considered imbalanced when one class significantly dominates the others, creating an unbalanced distribution. In many domains, the minority class holds crucial information, presenting unique challenges. This research addresses these challenges using an ensemble-based oversampling technique, EMSMOTE (Ensemble Multiclass Synthetic Minority Oversampling Technique). By leveraging SMOTE, EMSMOTE generates multiple synthetic datasets to train various classifiers. The proposed model, when combined with an ensemble random forest classifier, attained an impressive accuracy of 90.73%. This ensemble approach not only mitigates the effects of noisy synthetic samples introduced by SMOTE but also showcases significant enhancement in the overall performance in tackling class imbalances.Abstract
How to Cite
Downloads
Similar Articles
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Isreal Zewide, Wondwosen Wondimu, Melash Woldu, Kibnesh Admasu, Maize (Zea mays L.) Productivity as affected by different ratios of fertilizer (blended NPS) and inter row spacing at West Omo, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Selvi, T. S. Poornappriya, R. Balasubramani, Cloud computing research productivity and collaboration: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nivethra Selvaraj , Dr. R. Prathiba Devi, Eco-friendly natural dyes and their application on printing graphics , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Priya Rani, Sonia, Garima Dalal, Pooja Vyas, Pooja, Mapping electric vehicle adoption paradigms: A thematic evolution post sustainable development goals implementation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

