An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.25Keywords:
DDoS attack, Cloud computing, Deep learning, SDN, Classifier, Quadratic discriminant.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As cloud computing gains in popularity, safety becomes an increasingly important consideration. One of the most challenging issues in cloud computing is the detection of Distributed Denial-of-Service (DDoS) attacks (Gupta, B. B., et al., 2009). One of the most crucial aspects of cloud architecture is the ability to provide self-service whenever it is needed. Applications built on the cloud computing model are available on demand and at low cost. As cloud computing grows in popularity, so too is the amount of cyberattacks aimed against it. One such attack is a Distributed Denial of Service attack, which is designed to overload the cloud's hardware/software, resources, and services, making them difficult to use for everyone. The difficulty of this assault stems from the fact that it can overwhelm the victim's ability to communicate or compute in a short amount of time with little to no notice. It's getting harder to spot and stop these assaults as they get more sophisticated and more numerous. Several Machine Learning methods, including Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Decision Tree, Naive Bayes, Multi-layer Perceptron, XGBoost, and SGD have been implemented for accurate DDoS flooding attack detection. When compared to current methods, the suggested strategy of utilizing deep learning with Quadratic discriminant appears to result in higher accuracy. There is also a thorough comparison and evaluation of the abovementioned algorithms with respect to the accuracy measures used.Abstract
How to Cite
Downloads
Similar Articles
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper