An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.25Keywords:
DDoS attack, Cloud computing, Deep learning, SDN, Classifier, Quadratic discriminant.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As cloud computing gains in popularity, safety becomes an increasingly important consideration. One of the most challenging issues in cloud computing is the detection of Distributed Denial-of-Service (DDoS) attacks (Gupta, B. B., et al., 2009). One of the most crucial aspects of cloud architecture is the ability to provide self-service whenever it is needed. Applications built on the cloud computing model are available on demand and at low cost. As cloud computing grows in popularity, so too is the amount of cyberattacks aimed against it. One such attack is a Distributed Denial of Service attack, which is designed to overload the cloud's hardware/software, resources, and services, making them difficult to use for everyone. The difficulty of this assault stems from the fact that it can overwhelm the victim's ability to communicate or compute in a short amount of time with little to no notice. It's getting harder to spot and stop these assaults as they get more sophisticated and more numerous. Several Machine Learning methods, including Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Decision Tree, Naive Bayes, Multi-layer Perceptron, XGBoost, and SGD have been implemented for accurate DDoS flooding attack detection. When compared to current methods, the suggested strategy of utilizing deep learning with Quadratic discriminant appears to result in higher accuracy. There is also a thorough comparison and evaluation of the abovementioned algorithms with respect to the accuracy measures used.Abstract
How to Cite
Downloads
Similar Articles
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper