An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.25Keywords:
DDoS attack, Cloud computing, Deep learning, SDN, Classifier, Quadratic discriminant.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As cloud computing gains in popularity, safety becomes an increasingly important consideration. One of the most challenging issues in cloud computing is the detection of Distributed Denial-of-Service (DDoS) attacks (Gupta, B. B., et al., 2009). One of the most crucial aspects of cloud architecture is the ability to provide self-service whenever it is needed. Applications built on the cloud computing model are available on demand and at low cost. As cloud computing grows in popularity, so too is the amount of cyberattacks aimed against it. One such attack is a Distributed Denial of Service attack, which is designed to overload the cloud's hardware/software, resources, and services, making them difficult to use for everyone. The difficulty of this assault stems from the fact that it can overwhelm the victim's ability to communicate or compute in a short amount of time with little to no notice. It's getting harder to spot and stop these assaults as they get more sophisticated and more numerous. Several Machine Learning methods, including Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Decision Tree, Naive Bayes, Multi-layer Perceptron, XGBoost, and SGD have been implemented for accurate DDoS flooding attack detection. When compared to current methods, the suggested strategy of utilizing deep learning with Quadratic discriminant appears to result in higher accuracy. There is also a thorough comparison and evaluation of the abovementioned algorithms with respect to the accuracy measures used.Abstract
How to Cite
Downloads
Similar Articles
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bhuvaneshwarri Ilango, A machine translation model for abstractive text summarization based on natural language processing , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper