E-HRM: Learning approaches, applications and the role of artificial intelligence
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.45Keywords:
E-HRM, E-Learning, Artificial Intelligence, Information TechnologyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
E-HRM (Electronic Human Resources Management), which is derived from the concept of HRM (Human Resources Management) plays a significant role in automating certain key processes in the department of human resources. One of the modules of E-HRM is the training or the learning module, which when combined with a digital source turns out to be an E-Learning (Electronic Learning) or E-Training (Electronic Training) module. This is a transformation of converting the learning platform from an offline to an online mode. The organizations to increase their level of training from their employees should look for a fast-paced solution at a shorter turn-around time and the prime way to perform such a strategy is to automate the whole process of training and predict the training need and outcome. This research paper is focused on two aspects of e-learning i.e., how an e-learning system is collaborated with an intelligent system in the form of Artificial Intelligence and the other aspect is how an employee turn over data fetched from organizations in the IT (Information Technology) sector can help understand the real requirements of learning among employees in the IT organizations.Abstract
How to Cite
Downloads
Similar Articles
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Vandana, Ambrish Pandey, Comparative study of delta e of hybrid modulated and digitally modulated screening on different grades of paper , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Joshitha, A. Yakshitha, Mariyam Adnan, Diversification and application of Warli art on apparels , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. A. Shanthi, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rama Shankar Dubey, M.A. Naidu, Ajay Kumar Shukla, Awadhesh Kumar Shukla, Manish Kumar, Sonia Verma, Pramod Kumar Mourya, Application of Bioactive Molecules in the Treatment and Management of Type-1 Diabetic Disease , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Suprabha Amit Kshatriya, Arvind R Yadav, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Gurpreet S. Saund, Kulandai Samy, Eco-critical dystopia and anthropocentrism in Margaret Atwood’s Oryx and Crake , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.