E-HRM: Learning approaches, applications and the role of artificial intelligence
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.45Keywords:
E-HRM, E-Learning, Artificial Intelligence, Information TechnologyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
E-HRM (Electronic Human Resources Management), which is derived from the concept of HRM (Human Resources Management) plays a significant role in automating certain key processes in the department of human resources. One of the modules of E-HRM is the training or the learning module, which when combined with a digital source turns out to be an E-Learning (Electronic Learning) or E-Training (Electronic Training) module. This is a transformation of converting the learning platform from an offline to an online mode. The organizations to increase their level of training from their employees should look for a fast-paced solution at a shorter turn-around time and the prime way to perform such a strategy is to automate the whole process of training and predict the training need and outcome. This research paper is focused on two aspects of e-learning i.e., how an e-learning system is collaborated with an intelligent system in the form of Artificial Intelligence and the other aspect is how an employee turn over data fetched from organizations in the IT (Information Technology) sector can help understand the real requirements of learning among employees in the IT organizations.Abstract
How to Cite
Downloads
Similar Articles
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Divya R., Vanathi P. T., Harikumar R., An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Shaik Rubeena Yasmin, Yashodhara Verma, Reena Lawrence, Biowaste-derived Nanoparticles and Their Preparation: A Review , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.