E-HRM: Learning approaches, applications and the role of artificial intelligence
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.45Keywords:
E-HRM, E-Learning, Artificial Intelligence, Information TechnologyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
E-HRM (Electronic Human Resources Management), which is derived from the concept of HRM (Human Resources Management) plays a significant role in automating certain key processes in the department of human resources. One of the modules of E-HRM is the training or the learning module, which when combined with a digital source turns out to be an E-Learning (Electronic Learning) or E-Training (Electronic Training) module. This is a transformation of converting the learning platform from an offline to an online mode. The organizations to increase their level of training from their employees should look for a fast-paced solution at a shorter turn-around time and the prime way to perform such a strategy is to automate the whole process of training and predict the training need and outcome. This research paper is focused on two aspects of e-learning i.e., how an e-learning system is collaborated with an intelligent system in the form of Artificial Intelligence and the other aspect is how an employee turn over data fetched from organizations in the IT (Information Technology) sector can help understand the real requirements of learning among employees in the IT organizations.Abstract
How to Cite
Downloads
Similar Articles
- Muruganantham P, Harshavardhan J, Rajesh PK , Neelakrishnan S, Implementation of flexible and customizable free-from mirror heads-up display , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Brindha R, Viju S, Use of nettle- polypropylene blended mechanical punched nonwoven textiles in oil spill cleanups , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayaprasanth, J. Arul Melissa, Extended Kalman filter-based prognostic of actuator degradation in two tank system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Pankaj Kumar, Ambrish Pandey, Rajendrakumar Anayath, Study of print suitability of environment-friendly plastics using flexography printing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- V. Yamuna , P. Kandhavadivu, Recent developments in the synthesis of superabsorbent polymer from natural food sources: A review , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S Prabhakaran, Yugeshkrishnan M, Santhiya M, Danush Kumar S M, Smart Dustbin using IOT , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Jayshree Mehta, Pranjal Bhatt, Vikas Raval, Skill development in India: Challenges, current, and future perspectives , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.