Data analysis and machine learning-based modeling for real-time production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.11Keywords:
Data analysis, Machine learning, Fault detectionDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article focuses on data analysis and real-time data modeling using linear regression and decision tree algorithms that might make revolutionary predictions on production data. Factual time data points, including temperature, load, and warning on all the presented axis, are the dependent parameters which be contingent on the changes in the autonomous paraments like load. Monitoring and innovative prediction are very much needed in industry as there are recurrent load changes that would create a data drift and, in terms of maintenance, that could impact the production side, the need for continuous monitoring and control. Machine learning-based approaches would work better on these real-time production datasetsAbstract
How to Cite
Downloads
Similar Articles
- Pallavi Dheer, Aditi Sharma, Mallika Joshi, Rajesh Rayal, Indra Rautela, Rakesh Rai, Narotam Sharma, Serological and Biochemical Profiling of Pandemic Dengue Virus in Clinical Isolates During An Outbreak in Dehradun Region , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Naresh Vyas, Bhagirath Choudhary, Manu Purohit, Taxonomical Description of One Species of Soil Nematode Fauna in Bilara , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Aman Bora, Ajay Kumar, Akhilesh Dwivedi, Exploring effective methods of conflict resolution: Strategies and challenges for sustainable peace , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Bhavya Sathenapalli, Kali Charan Sabat, Unleashing entrepreneurial spirit: Driving innovation and growth in a rapidly changing world , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Rajesh Kumar Singh, Genetic Variability in Aromatic Rice , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Kritika Gautam, Anitha Arvind, Neha Kapur, Mukesh Kumar, The keratometry changes pre and post-applanation tonometry , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Enthalpy During Complex Formation of Mn(II), Ni(II), Cd(II) and Hg(II) with p-fluorobenzoylthioacetophenone , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rianka Sarkar, Shedol shutki: The diminishing cultural art of fish preservation from erstwhile East Bengal , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 43 44 45 46 47 48 49 50 51 52 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper

