Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.23Keywords:
Free energy, p-chlorobenzoylthioacetophenone, Potentiometric Titration, Stability Constant, Solution equilibriaDimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para-chlorobenzoylthioacetophenone is an organic ligand of monothio-β-diketone class. Stability constants of bivalent complexes of manganese, nickel, palladium and platinum at three different temperatures were determined using Calvin-Bjerrum’s pH-metric technique as adopted by Irving and Rossotti. From the data of stability constant of the complexes obtained, standard changes in free energy at the said temperatures namely 283K, 293K and 303K were determined with the help of thermodynamic relation, ΔG° = −2.303 RT Log β. Standard changes in free energy contributing towards complex formation have been discussed.Abstract
How to Cite
Downloads
Similar Articles
- Akanksha Singh, Nand Kumar, Analysis of renewable energy and economic growth of Germany , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Enthalpy During Complex Formation of Mn(II), Ni(II), Cd(II) and Hg(II) with p-fluorobenzoylthioacetophenone , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Jonnakuti V. G. Rama Rao, Muthuvel Balasubramanian, Chaladi S. Gangabhavani, Mutyala A. Devi, Kona D. Devi, A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rahat Yezdani, S. M. K. Quadri, A PPR-based energy-efficient VM consolidation in cloud computing , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Enthalpy During Complex Formation of Mn(II), Ni(II), Cd(II) and Hg(II) with p-fluorobenzoylthioacetophenone , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper