A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.10Keywords:
Renewable Energy System, Hybrid System, TLBO algorithm, Standalone RES, PV SystemDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Depletion of fossil fuels, increase in fuel prices, and global warming have motivated the utilization of renewable energy resources like solar and wind, as they are eco-friendly. Due to the stochastic nature of PV and wind, using a single energy source is not reliable and uneconomical as it results in system over-sizing. Integration of renewable sources such as PV and wind can significantly increase energy reliability compared to single-source systems. PV and wind hybrid systems are economically advantageous in isolated areas for providing continuous and quality power due to their inherent complementary characteristics and availability in most areas. Utilizing grid-tied renewable energy resources is also economical and reliable to overcome power outages in remote areas. This study proposes a TLBO algorithm for optimal design and sizing of HRES in both standalone and grid-connected modes due to its simplicity and fewer parameters to adjust. The objective of the optimization problem in standalone, as well as the grid-connected mode, is to minimize the LCE and maximize the system reliability and renewable energy integration while satisfying the system constraints and load demand. The number of PV panels, wind turbines, and batteries is taken as decision variables optimally determined by the proposed optimization algorithm. The simulations are carried out in MATLAB software. The effectiveness of TLBO in designing and sizing the hybrid system is investigated, and its performance is compared with other well-known optimization algorithms PSO; the TLBO provides the best optimal solution, better performance, and faster convergence speed compared to different algorithmsAbstract
How to Cite
Downloads
Similar Articles
- Akanksha Singh, Nand Kumar, Analysis of renewable energy and economic growth of Germany , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- L. Vamsi Narasimha Rao, P.S.Prakash, M.Veera Kumari, Improvement of power system operation using a novel hybrid optimization method for optimal allocation of facts devices in radial transmission line , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- N Archana, R Aravind Babu, Fault-tolerant reconfigurable second-life battery system using cascaded DC- DC converter , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Santhanalakshmi M, Ms Lakshana K, Ms Shahitya G M, Enhanced AES-256 cipher round algorithm for IoT applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anurag Tripathi, Shri Prakash, Prem Narayan Tripathi, Impact of SARS-CoV-2 (COVID-19) on the Nervous System: A Critical Review , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper