A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.10Keywords:
Renewable Energy System, Hybrid System, TLBO algorithm, Standalone RES, PV SystemDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Depletion of fossil fuels, increase in fuel prices, and global warming have motivated the utilization of renewable energy resources like solar and wind, as they are eco-friendly. Due to the stochastic nature of PV and wind, using a single energy source is not reliable and uneconomical as it results in system over-sizing. Integration of renewable sources such as PV and wind can significantly increase energy reliability compared to single-source systems. PV and wind hybrid systems are economically advantageous in isolated areas for providing continuous and quality power due to their inherent complementary characteristics and availability in most areas. Utilizing grid-tied renewable energy resources is also economical and reliable to overcome power outages in remote areas. This study proposes a TLBO algorithm for optimal design and sizing of HRES in both standalone and grid-connected modes due to its simplicity and fewer parameters to adjust. The objective of the optimization problem in standalone, as well as the grid-connected mode, is to minimize the LCE and maximize the system reliability and renewable energy integration while satisfying the system constraints and load demand. The number of PV panels, wind turbines, and batteries is taken as decision variables optimally determined by the proposed optimization algorithm. The simulations are carried out in MATLAB software. The effectiveness of TLBO in designing and sizing the hybrid system is investigated, and its performance is compared with other well-known optimization algorithms PSO; the TLBO provides the best optimal solution, better performance, and faster convergence speed compared to different algorithmsAbstract
How to Cite
Downloads
Similar Articles
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- G. Tripathi, R. Deora, FAUNA – ASSISTED LITTER DECOMPOSITION AND ITS IMPACT ON CHEMICAL AND BIOLOGICAL HEALTH OF BALANITES AEGYPTIACA BASED SILVIPASTURE SYSTEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Arunachalaprabu G, Fathima Bibi K, A pattern-driven Huffman encoding and positional encoding for DNA compression , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- D. Jayaprasanth, J. Arul Melissa, Extended Kalman filter-based prognostic of actuator degradation in two tank system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rahat Yezdani, S. M. K. Quadri, A PPR-based energy-efficient VM consolidation in cloud computing , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- I.Bhuvaneshwarri, M. N. Sudha, An implementation of secure storage using blockchain technology on cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

