Data analysis and machine learning-based modeling for real-time production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.11Keywords:
Data analysis, Machine learning, Fault detectionDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article focuses on data analysis and real-time data modeling using linear regression and decision tree algorithms that might make revolutionary predictions on production data. Factual time data points, including temperature, load, and warning on all the presented axis, are the dependent parameters which be contingent on the changes in the autonomous paraments like load. Monitoring and innovative prediction are very much needed in industry as there are recurrent load changes that would create a data drift and, in terms of maintenance, that could impact the production side, the need for continuous monitoring and control. Machine learning-based approaches would work better on these real-time production datasetsAbstract
How to Cite
Downloads
Similar Articles
- Pratibha Mehetre, A correlational study of identity status in relation to Parenting style among adolescents , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Nisha Khan, Dr. Shriya Goyal, Politics of marriage: Exploring the intersection of love, violence and power in When I Hit You by Meena Kandasamy , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Dhabha Nehal Hitendrabhai, Sudhakar S, Effect of multidirectional plyometric training along with core strengthening among tennis players on dynamic balance, vertical jump performance and agility , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Prithi M., Sudhakar S., Effect of autoregulatory progressive resistance exercise on hip extensor and knee flexor muscles on power, balance, and Ollie performance among skateboarders , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Anjum Parvez, Seema Yadav, Sandhya Verma, Electronic Record as Evidence in the Courts: An Analysis , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Atal Bihari Bajpai, Pragati Misra, Manjul Diman, Indra Rautela, Rajesh Rayal, Kamlesh Jeena, Manish Dev Sharma, Study on the Chemical Composition and Antioxidant Activity of Extracts from Wild and in vitro Raised Endangered Medicinal Plant Ephedra gerardiana , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Parwez Ahmad, Md Jamaluddin, Estimation of Some Heavy Metal Estimation at Sites of Saryug River as Lateral Tributary of the Ganga in Northern Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Deo Narayan, C. D. Agashe, K. D. Verma, Impact of Different Individual Games on Selected Personality Traits , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Ayalew Ali, Sitotaw Wodajo, Taye Teshoma, The link between corporate governance and earnings management of insurance companies in Ethiopia , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
<< < 44 45 46 47 48 49 50 51 52 53 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper

