Data analysis and machine learning-based modeling for real-time production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.11Keywords:
Data analysis, Machine learning, Fault detectionDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article focuses on data analysis and real-time data modeling using linear regression and decision tree algorithms that might make revolutionary predictions on production data. Factual time data points, including temperature, load, and warning on all the presented axis, are the dependent parameters which be contingent on the changes in the autonomous paraments like load. Monitoring and innovative prediction are very much needed in industry as there are recurrent load changes that would create a data drift and, in terms of maintenance, that could impact the production side, the need for continuous monitoring and control. Machine learning-based approaches would work better on these real-time production datasetsAbstract
How to Cite
Downloads
Similar Articles
- Neetu Singh, Ravindra Kumar Singh, Acute Toxicity of Sumithion Insecticide on Freshwater Catfish, Clarias batrachus (Linnaeus, 1758) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Merina Yasmin, Chaitali Kundu, Monalisha Paul, Sandip Kumar Sinha, Ameliorative efficacy of aqueous extract of clove bud (AEC) against smokeless tobacco product induced antioxidative damages: An experimental study on male albino rat , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Neha Saini, Rashmi Verma, Rabia Basri Aziz, Ashmita Bhatt, Hem Chandra Pant, Naveen Gaurav, Effect of Growth Regulators on Direct Clonal Propagation and Analysis of Total Phenolic Content of Wild and Propagated Mucuna pruriens , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rajarajeswari M, Reena Ravi, Effectiveness of multicomponent intervention on smartphone addiction and leisure wellbeing among adolescents of selected PU college in Bangalore , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Anju Bhatnagar, Assessment of antioxidant activity and phytochemical screening in leaf extract of Andrographis paniculate (Burm. f.) nees , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ayalew Ali, Sitotaw Wodajio, The effect of risk management on the bank’s financial stability in the emerging economy , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Teklil Abadeye, Teshome Yitbarek, Isreal Zewide, Kibinesh Adimasu, Assessing soil fertility influenced by land use in Moche, Gurage Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- B Bindu, Srikanth N, Haris Raja V, Barath Kumar JK, Dharmendra R, Comparative analysis of inverted pendulum control , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Shivani Tank, Isolation, Characterization and Exploring the Biotechnological Potential of Halophiles , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Kowsalya Ramasamy, Thiyagarajan Krishnan, Performance analysis of RF substrate materials in ISM band antenna applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 38 39 40 41 42 43 44 45 46 47 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper

