Deep learning hyperparameter’s impact on potato disease detection
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.04Keywords:
Deep learning, CNN, Batch size, Optimizer, Activation function, PotatoDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In this study, we reviewed various published works that used deep learning techniques to detect potato leaf disease. Deep learning techniques have shown remarkable detection performance for potato leaf disease. In particular, CNN has been shown to be efficient in extracting features from images and in identifying patterns that are challenging to identify using machine learning techniques. However, CNN architectures with different activation functions, batch sizes, and optimizers can cause different results. Therefore, in this work, a CNN model has been implemented to analyze the effect of different activation functions, batch sizes, and optimizers for the detection of potato leaf diseases. Based on the findings of three experiments, the leaky rectifier function performed best as the activation function for the convolutional neural network (CNN) model. AdaGrad’s optimizer showed superior accuracy compared to stochastic gradient descent (SGD), Adam, Adamax, and RMSProp algorithms. We also discovered that the model’s performance was even better, but only when the batch size used in the model was smaller than the size of the test dataset. The work is based on deep learning to identify potato leaf disease and provide researchers and practitioners with heuristic knowledge to help increase potato production when CNN is employed in the agricultural sector.Abstract
How to Cite
Downloads
Similar Articles
- Varsha Kachhela, Jalpa Rank, Charmy Kothari, Investigating optimal conditions for direct red 37 biodegradation using Enterococcus innesii strain CV10 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Vaishali, M. Mary Mejrullo Merlin, The Study on Plithogenic Fuzzy Sets & its Properties , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- S K Tiwari, Anamika Rai, On S—3 Like Five-Dimensional Finsler Spaces , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Bhavesh Parekh, Parthiv Patel, Unravelling Indianness in R.K. Narayan’s novels: A multidisciplinary exploration of culture, tradition and modernity , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

