Deep learning hyperparameter’s impact on potato disease detection
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.04Keywords:
Deep learning, CNN, Batch size, Optimizer, Activation function, PotatoDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In this study, we reviewed various published works that used deep learning techniques to detect potato leaf disease. Deep learning techniques have shown remarkable detection performance for potato leaf disease. In particular, CNN has been shown to be efficient in extracting features from images and in identifying patterns that are challenging to identify using machine learning techniques. However, CNN architectures with different activation functions, batch sizes, and optimizers can cause different results. Therefore, in this work, a CNN model has been implemented to analyze the effect of different activation functions, batch sizes, and optimizers for the detection of potato leaf diseases. Based on the findings of three experiments, the leaky rectifier function performed best as the activation function for the convolutional neural network (CNN) model. AdaGrad’s optimizer showed superior accuracy compared to stochastic gradient descent (SGD), Adam, Adamax, and RMSProp algorithms. We also discovered that the model’s performance was even better, but only when the batch size used in the model was smaller than the size of the test dataset. The work is based on deep learning to identify potato leaf disease and provide researchers and practitioners with heuristic knowledge to help increase potato production when CNN is employed in the agricultural sector.Abstract
How to Cite
Downloads
Similar Articles
- Ayalew Ali, Sitotaw Wodajo, Taye Teshoma, The link between corporate governance and earnings management of insurance companies in Ethiopia , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Komal Raichura, Asha L. Bavarava, Redefining Classroom Dynamics: AI Tools and the Future of English Language Pedagogy , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Akshay J., G. Mahesh Kumar, B. H. Manjunath, Optimizing durability of the thin white topping applying Taguchi method using desirability function , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V.Samuthira Pandi, B. R. Senthil kumar, M Anusuya, Annu Dagar, Synthesis and characterization of ZnO, ZnO doped Ag2O nanoparticles and its photocatalytic activity , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jayendra K. Singh, Gyan P. Singh, Sanjay K. Singh, Son preference and children sex composition in Uttar Pradesh: An empirical analysis , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ravindra Kumar Verma, An Evaluation of Second Viscosity Coefficient of Liquid He3 Phase-B for Balian and Wethamer State as Function of Reduced Temperature , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Modenisha U, W. Ritha, Sasitharan Nagapan, Analysing the cost structure of construction sectors considering carbon emission factors , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Arunachalaprabu G, Fathima Bibi K, A pattern-driven Huffman encoding and positional encoding for DNA compression , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Fire and smoke detection with high accuracy using YOLOv5 , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

