Deep learning hyperparameter’s impact on potato disease detection
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.04Keywords:
Deep learning, CNN, Batch size, Optimizer, Activation function, PotatoDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In this study, we reviewed various published works that used deep learning techniques to detect potato leaf disease. Deep learning techniques have shown remarkable detection performance for potato leaf disease. In particular, CNN has been shown to be efficient in extracting features from images and in identifying patterns that are challenging to identify using machine learning techniques. However, CNN architectures with different activation functions, batch sizes, and optimizers can cause different results. Therefore, in this work, a CNN model has been implemented to analyze the effect of different activation functions, batch sizes, and optimizers for the detection of potato leaf diseases. Based on the findings of three experiments, the leaky rectifier function performed best as the activation function for the convolutional neural network (CNN) model. AdaGrad’s optimizer showed superior accuracy compared to stochastic gradient descent (SGD), Adam, Adamax, and RMSProp algorithms. We also discovered that the model’s performance was even better, but only when the batch size used in the model was smaller than the size of the test dataset. The work is based on deep learning to identify potato leaf disease and provide researchers and practitioners with heuristic knowledge to help increase potato production when CNN is employed in the agricultural sector.Abstract
How to Cite
Downloads
Similar Articles
- Tulika ., EFFECT OF FURADAN ON HAEMATOLOGY OF Channa punctatus (BLOCH) IN CULTURE MEDIUM UNDER LABORATORY CONDITIONS , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Kumar Sanu, Equabal Jawaid, POND EUTROPHICATION AND FOOD TYPE AS DETERMINANT OF GROWTH AND SURVIVAL IN Clarias batrachus (LINN.) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- RAMENDRA KUMAR DWIVEDI, PREM NARAYAN TRIPATHI, AGE AND GROWTH RELATIONSHIP OF CATLA CATLA IN AQUATIC ECOSYSTEM OF RIVER GHAGHRA AT AYODHYA , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Partha Majumdar, Empowering skill development through generative AI bridging gaps for a sustainable future , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Raju Prasad Singh, R.K. Verma, Study of Josephson Effect Between Bose Condensate , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Ayalew Ali, Determinants of banks profitability: Do capital structure and dividend policy matters? , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Deo Narayan, C. D. Agashe, K. D. Verma, Impact of Different Individual Games on Selected Personality Traits , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Aman Bora, Akhilesh Dwivedi, From Protectionism to Green Multilateralism: Trade Diplomacy and Environmental Accountability in the Global South , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Dhruvina A Dabgar, Zankhana Pandit, Molecular Foundations of Life: An Integrated Study of Cell Biology and Genetics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Gulshan Makkad, Lalsingh Khalsa, Vinod Varghese, Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

