Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer
Published
Keywords:
Magnetic resonance imaging, Optimizer based Semantic-Aware Transformer, MRI, segmentation, Bonobo optimization algorithmDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In order to improve patients’ chances of survival and prognosis, early detection of brain tumors is essential. This task requires the physical analysis of magnetic resonance imaging (MRI) images of brain tumors. Consequently, more accurate tumor diagnosis necessitates computational methods. Shape, volume, boundaries, size, tumor identification, segmentation, and classification evaluations continue to be tough, nonetheless. Cancer features also make correct segmentation difficult, including fuzziness, complicated backgrounds, and substantial variations in size, shape, and intensity distribution. To lecture these issues, this work proposes a new Optimizer based Semantic-Aware Transformer (OSAT) for segmenting brain tumors. In addition, features based on intensity, texture, besides shape were manually retrieved from MRI data. With less memory and computational complexity, the Bonobo optimization algorithm (BOA) fine-tunes SAT, enhancing the ability of feature representation learning. Segmentation measures were among the many evaluation metrics utilized to evaluate performance in this work across the three Brain Tumor Segmentation (BraTS) challenge datasets. A more robust and generalizable solution was also obtained by improving OSAT’s performance with the addition of handcrafted features. When it comes to efficient and accurate brain tumor segmentation, this research could have major practical implications. Exploring different feature fusion methods and adding more imaging modalities to enhance the effectiveness of the projected technique are potential areas for future research.Abstract
How to Cite
Downloads
Similar Articles
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ravindra Kumar Verma, An Evaluation of Second Viscosity Coefficient of Liquid He3 Phase-B for Balian and Wethamer State as Function of Reduced Temperature , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- M. Balamurugan, A. Bharathiraja, An enhanced hybrid GCNN-MHA-GRU approach for symptom-to-medicine recommendation by utilizing textual analysis of customer reviews , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kalyani K., Praveen Kumar T. D., Roopa A. N., AI-based tools for enhancing reflective practice and self-efficacy in pre-service teachers , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.

