Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer
Published
Keywords:
Magnetic resonance imaging, Optimizer based Semantic-Aware Transformer, MRI, segmentation, Bonobo optimization algorithmDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In order to improve patients’ chances of survival and prognosis, early detection of brain tumors is essential. This task requires the physical analysis of magnetic resonance imaging (MRI) images of brain tumors. Consequently, more accurate tumor diagnosis necessitates computational methods. Shape, volume, boundaries, size, tumor identification, segmentation, and classification evaluations continue to be tough, nonetheless. Cancer features also make correct segmentation difficult, including fuzziness, complicated backgrounds, and substantial variations in size, shape, and intensity distribution. To lecture these issues, this work proposes a new Optimizer based Semantic-Aware Transformer (OSAT) for segmenting brain tumors. In addition, features based on intensity, texture, besides shape were manually retrieved from MRI data. With less memory and computational complexity, the Bonobo optimization algorithm (BOA) fine-tunes SAT, enhancing the ability of feature representation learning. Segmentation measures were among the many evaluation metrics utilized to evaluate performance in this work across the three Brain Tumor Segmentation (BraTS) challenge datasets. A more robust and generalizable solution was also obtained by improving OSAT’s performance with the addition of handcrafted features. When it comes to efficient and accurate brain tumor segmentation, this research could have major practical implications. Exploring different feature fusion methods and adding more imaging modalities to enhance the effectiveness of the projected technique are potential areas for future research.Abstract
How to Cite
Downloads
Similar Articles
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- K. Hima Bindu, How can India strengthen mental health services as part of its efforts to promote holistic wellbeing by 2047 , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Sarika A. Nirmal, Nalanda D. Wani, The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Nalini. S, Ritha. W, Sasitharan Nagapan, Economic Order Quantity under Perishability: Analytical and Iterative Approaches to Cost Minimization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- N Archana, R Aravind Babu, Fault-tolerant reconfigurable second-life battery system using cascaded DC- DC converter , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- T. Kanimozhi, V. Gowtham Raaj, C. R. Santhosh, Impulsively intended buying behavior: A new horizon of shopping behavior in the online era , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.

