Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer
Published
Keywords:
Magnetic resonance imaging, Optimizer based Semantic-Aware Transformer, MRI, segmentation, Bonobo optimization algorithmDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In order to improve patients’ chances of survival and prognosis, early detection of brain tumors is essential. This task requires the physical analysis of magnetic resonance imaging (MRI) images of brain tumors. Consequently, more accurate tumor diagnosis necessitates computational methods. Shape, volume, boundaries, size, tumor identification, segmentation, and classification evaluations continue to be tough, nonetheless. Cancer features also make correct segmentation difficult, including fuzziness, complicated backgrounds, and substantial variations in size, shape, and intensity distribution. To lecture these issues, this work proposes a new Optimizer based Semantic-Aware Transformer (OSAT) for segmenting brain tumors. In addition, features based on intensity, texture, besides shape were manually retrieved from MRI data. With less memory and computational complexity, the Bonobo optimization algorithm (BOA) fine-tunes SAT, enhancing the ability of feature representation learning. Segmentation measures were among the many evaluation metrics utilized to evaluate performance in this work across the three Brain Tumor Segmentation (BraTS) challenge datasets. A more robust and generalizable solution was also obtained by improving OSAT’s performance with the addition of handcrafted features. When it comes to efficient and accurate brain tumor segmentation, this research could have major practical implications. Exploring different feature fusion methods and adding more imaging modalities to enhance the effectiveness of the projected technique are potential areas for future research.Abstract
How to Cite
Downloads
Similar Articles
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Aishwarya Jha, Jyoti Gangta, Neha Kapur, Comparison of anterior corneal aberrometry, keratometry and pupil size with Scheimpflug tomography and ray tracing aberrometer in moderate and high refractive error , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Enhanced Block Chain Financial Transaction Security Using Chain Link Smart Agreement based Secure Elliptic Curve Cryptography , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Sreenath M.V. Reddy, D. Annapurna, Anand Narasimhamurthy, Influence node analysis based on neighborhood influence vote rank method in social network , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

