Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer
Published
Keywords:
Magnetic resonance imaging, Optimizer based Semantic-Aware Transformer, MRI, segmentation, Bonobo optimization algorithmDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In order to improve patients’ chances of survival and prognosis, early detection of brain tumors is essential. This task requires the physical analysis of magnetic resonance imaging (MRI) images of brain tumors. Consequently, more accurate tumor diagnosis necessitates computational methods. Shape, volume, boundaries, size, tumor identification, segmentation, and classification evaluations continue to be tough, nonetheless. Cancer features also make correct segmentation difficult, including fuzziness, complicated backgrounds, and substantial variations in size, shape, and intensity distribution. To lecture these issues, this work proposes a new Optimizer based Semantic-Aware Transformer (OSAT) for segmenting brain tumors. In addition, features based on intensity, texture, besides shape were manually retrieved from MRI data. With less memory and computational complexity, the Bonobo optimization algorithm (BOA) fine-tunes SAT, enhancing the ability of feature representation learning. Segmentation measures were among the many evaluation metrics utilized to evaluate performance in this work across the three Brain Tumor Segmentation (BraTS) challenge datasets. A more robust and generalizable solution was also obtained by improving OSAT’s performance with the addition of handcrafted features. When it comes to efficient and accurate brain tumor segmentation, this research could have major practical implications. Exploring different feature fusion methods and adding more imaging modalities to enhance the effectiveness of the projected technique are potential areas for future research.Abstract
How to Cite
Downloads
Similar Articles
- P. Hepsibah Kenneth, E. George Dharma Prakash Raj, Priority based parallel processing multi user multi task scheduling algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- S. Ramkumar, K. Aanandha Saravanan, Martin Joel Rathnam, M. Revathy, Integration of AI and agent-based modeling for simulating human-ecological systems , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Neeraj, Anita Singhrova, A critical review of blockchain-based authentication techniques , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Gourav Kalra, Arun Kumar Gupta, Multi-response Optimization of Machining Parameters in Inconel 718 End Milling Process Through RSM-MOGA , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

