Lancaster sliced regressive keyword extraction based semantic analytics on social media documents
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.14Keywords:
Semantic Analytics, Natural Language Processing, Social Media, Lancaster Tokenized, Sliced Inverse Regression, Keyword Extraction.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Semantic analytics is one of the new issues materialized in Natural Language Processing (NLP) with the emergence of social networks. Semantic analytics on social media documents refers to the procedure of employing NLP techniques for analyzing deeper sense and context of text on social media platforms. Making use of amount of information being now available, research and industry have attempted materials and mechanisms to analyze sentiments automatically in social networks.It just goes beyond keyword exploration to understand the associations between words, phrases and concepts within a social media post, recognizing for a more refined clarification of user sentiment and purpose. While the extensive greater part of these days researchare completely concentrating on enhancing the algorithms employed for sentiment evaluation, the present one emphasizes the advantages of employing a semantic based method for representing the analysis’ results, the emotions and social media specific concepts. In this work a method called, Lancaster Tokenized Sliced Inverse Regressive Keyword Extraction (LT-SIRKE) for performing efficient semantic analysis on social media documents is introduced. LT-SIRKE technique is divide as query pre-processing as well as keyword extraction. Initially in LT-SIRKE method, the user inputs their query into the user window. Afterward, the query is sent to the system for efficient pre-processing. In query pre-processing phase, Stochastic Gradient Descent Keras-based tokenization, Lancaster-based stemming and Zipf’s Law-based stop word removal process is carried out. After preprocessing, keywords are extracted using Bayesian Averaging and Sliced Inverse Regression-based Keyword Extraction to facilitate efficient information access. Experimental assessment is performed with various metrics namely precision, recall, accuracy, keyword extraction time and error with number of user requested queries.Abstract
How to Cite
Downloads
Similar Articles
- Sreenath M.V. Reddy, D. Annapurna, Anand Narasimhamurthy, Influence node analysis based on neighborhood influence vote rank method in social network , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sharayu Mirasdar, Mangesh Bedekar, Knowledge graphs for NLP: A comprehensive analysis , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- C. S. Manikandababu, V. Rukkumani, Advanced VLSI-based digital image contrast enhancement: A novel approach with modified image pixel evaluation logic , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Roop Kanwal, Children’s literature as a tool for social change: Teaching values and social awareness , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Arunima Dey, Kankana Ghosh, Debangana Chakrabarti, Mahul Brahma, Re-envisioning the mainstream: A study on the acceptance of LGBTQIA+ Protagonists on a Bengali OTT platform , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Komal Raichura, Asha L. Bavarava, Redefining Classroom Dynamics: AI Tools and the Future of English Language Pedagogy , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kamna Kandpal, Piyashi Dutta, P.Sasikala Ravichandran, Examining the relationship between motivation and incentives in the context of maternal health awareness: A study of Asha workers in Uttarakhand , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- N Harini, N Santhi, Challenges and opportunities in product development using natural dyes , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

